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Introduction

How to design the device to optimize the physical phenomenon?
minimize temperature at output
minimize pressure drop
...
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Model

Ωs

Ωf

In a region Ω, suppose a flow occupies a region Ωf and the
solid defines a region Ωs such that Ω = Ωf ∪ Ωs . Suppose
also that the channel is heated.
=⇒ Navier-Stokes coupled with advection-diffusion equa-
tions.
(Focus only on steady-state model.)
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Model

Ωs

Ωf ∇ · u = 0 in Ωf

(u · ∇)u +∇p − Re−1∆u− Riθey = 0 in Ωf

∇ · (uθ)−∇ · (Re−1Pr−1k(x)∇θ) = 0 in Ω

u = 0 in Ωs

We would like to control the distribution of solid. However,
hard to put this in a control context.
=⇒ Penalization technique.
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Model

Ωs

Ωf

∇ · u = 0 in Ω

(u · ∇)u +∇p − Re−1∆u− Riθey+η1Ωsu = 0 in Ω

∇ · (uθ)−∇ · (Re−1Pr−1k(x , 1Ωs )∇θ) = 0 in Ω

Converges as η → +∞ [1].
However, the indicator 1Ωs is a binary function, so not suit-
able for optimization.
=⇒ Convexification and penalization of intermediate val-
ues.

0[1] Angot, P., Bruneau, C.H., Fabrie, P.: A penalization method to take into account
obstacles in incompressible viscous flows. Numerische Mathematik, 1999
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How to penalize intermediate values ?

Convexification. {0, 1} → [0, 1].

Define α : Ω → [0, 1] and hτ : [0, 1] → [0, 1],
s.t. hτ (α(x)) ≈ 1Ωs (x)

How to avoid the values between 0 and 1?

Dynamical approach: use a
function hτ that will quickly
evolve towards 0 or 1.

Optimization approach: add
a cost to push towards 0 or
1.
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How to penalize intermediate values ?

Cost penalization : usual concerning optimization with constraints (barrier
methods...). In our case, we minimize the following cost:∫

Ω
hτ (α(x))(1− hτ (α(x)))dx

Since hτ : [0, 1]→ [0, 1] =⇒ penalizes the values between 0 and 1, and hτ (α)
approximates 1Ωs .

7 / 23



Topology opt
of heated
channel

Alexandre
Vieira

Introduction

Model
analysis
Definition

Existence and
discretization

Optimization

Numerical
example

Conclusion

How to penalize intermediate values ?
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hτ can be used to penalize intermedi-
ate values, and obtain hτ −−−−→

τ→+∞
0 or

1.
SIMP : hτ (x) = xτ

RAMP :
hτ (x) = 1− (1− x) 1+τ

1+τ−τx
Sigmoid : hτ (x) =

1
1+exp(−τ(x−x0)) −

1
1+exp(τx0)
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Model

Ωs

Ωf

∇ · u = 0 in Ω

(u · ∇)u +∇p − Re−1∆u− Riθey+ηhτ (α)u = 0 in Ω

∇ · (uθ)−∇ · (Re−1Pr−1k(x , 1Ωs )∇θ) = 0 in Ω

=⇒ α defines the distribution of solid.
Another problem: how does this affect the conductivity
function k(x , 1Ωs )?
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Model

k=1

k=3

k=2 k=8

Usually, thermal conductivity = dis-
crete set of constants.
We would like to control the distribu-
tion of thermal conductivity also!
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Interpolation of thermal conductivity constants

0 2 4
x

2

3

4

5 tau=10
tau=20
tau=30

=⇒ Advocates for the use of the
sigmoid interpolation function. Intro-
duces a new control function φ.
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Model

Ωs

Ωf

We would like to solve:

min
α,φ
J (u, θ, p)

such that:

∇ · u = 0 in Ω

(u · ∇)u +∇p − Re−1∆u− Riθey+ηhτ (α)u = 0 in Ω

∇ · (uθ)−∇ · (Re−1Pr−1kτ (α, φ)∇θ) = 0 in Ω

α defines the distribution of solid, φ the thermal conduct-
ivity.
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Existence of solution

We first study the existence of solutions to these equations. Suppose :

α, φ ∈ Uad = {ξ ∈ BV (Ω) | 0 ≤ ξ(x) ≤ 1 | |Dξ|(Ω) ≤ κ}.

and hτ , kτ are bounded continuous functions with k(x) ≥ kmin > 0.

Theorem
Given α, φ ∈ Uad, and given Ri, input velocity and heat flux small enough, there
exists a solution (u, θ, p) ∈ H1(Ω)2 × H1(Ω)× L2(Ω).
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Optimality problem

Suppose now we would like to minimize a functional J (α, φ, u, θ, p) Under some
hypothesis, there exists an optimal solution. But more interesting:

Theorem
Define a sequence (α∗h, φ

∗
h, u
∗
h, θ
∗
h, p
∗
h) of global optimal solutions to the discretized

problem. Then it converges (weak-*, weak-*, strong, strong, strong) to a global
optimal solution of the continuous problem.
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Numerical example

max
α,φ

∫
Γout

θ

s.t.


(u, θ, p) solution of N.-S. + adv-diff
uin(x , 0) = 1.8x(1− x), ϕ = 3

Re = 100,Ri = 2,Pr = 0.71, η = 108.

Code done using Fenics, available online.
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Numerical example

You may have noticed that the control φ depends on the control α, since the
distribution of the thermal diffusivity in the solid depends.... On the distribution of
solid.
=⇒ Advocates for alternating directions!
Optimize first on α, then on φ. In all numerical tests: it works way better.
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Numerical example

For this presentation, I want to compare two approaches:
1 Gradually increase τ defining hτ and kτ .
2 Keep τ fixed and penalize more and more in the cost

∫
Ω hτ (α)(1− hτ (α)).
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Numerical example: function

(a) Velocity (b) Temperature (c) kτ

Figure: Result with function penalization (τ → +∞).
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Numerical example: cost

(a) Velocity (b) Temperature (c) kτ

Figure: Result with cost penalization.
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Conclusion

How to solve a complex topology optimization problem applied to fluid dynamics?
A nice and coherent way to approximate the problem.
Mathematically sound, and now fully analyzed.
Gives interesting numerical results.
Gives hints concerning ways to enhance it!
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Conclusion

What is left to enhance?
Computations really long, may hardly converge.
Works for some examples, and not for others: does their exist a uniform
method for all problems?
Optimal solution for the thermal conductivity still depends on the initial guess:
how to enhance this?
Solution needs to be "cleaned" (how do we remove the holes without altering
the optimality?).
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We have a preprint!

Topology Optimization for Steady-state anisothermal flow targeting solid with
piecewise constant thermal diffusivity
Alexandre Vieira, Alain Bastide, Pierre-Henri Cocquet
https://hal.archives-ouvertes.fr/hal-02569142
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Question time!
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