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Optimization How to design the device to optimize the physical phenomenon?
Nu ical H -
oxample. @ minimize temperature at output
Conclusion © minimize pressure drop
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Introduction In a region €2, suppose a flow occupies a region Qf and the
Qﬂn?ffslas solid defines a region Qs such that Q = Qr U Q. Suppose
Defintion | also that the channel is heated.
Existence ani d . . . . .
dicrtization — Navier-Stokes coupled with advection-diffusion equa-
Numerical tions'
example (Focus only on steady-state model.)

Conclusion
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2 é Vou=0 in Qf
(u-V)u+Vp—Re *Au—Rife, =0 in Qf
~

V- (uh) —V-(RePrik(x)V) =0 in Q
u=0 in Qs

We would like to control the distribution of solid. However,

—
Q hard to put this in a control context.
S . . .
— Penalization technique.
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Alexandre V-u=0 in Q
o (u-V)u+Vp—Re'Au—Rife, +1lgu=0 inQ
Model V- (uh) = V- (Re Prtk(x,10,)VO) =0 in Q

analysis

Definition

Converges as n — +o0 [1].

However, the indicator 1q, is a binary function, so not suit-
e able for optimization.
Corallision : — Convexification and penalization of intermediate val-

T T T ues.

°[1] Angot, P., Bruneau, C.H., Fabrie, P.: A penalization method to take into account
obstacles in incompressible viscous flows. Numerische Mathematik, 1999
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How to penalize intermediate values 7

Convexification.

{0,1} — [0, 1].

Define o : Q2 — [0,1] a
s.t. h-(a(x)) = 1g.(x)

nd h, : [0,1] — [0,1],

’ How to avoid the values between 0 and 1?‘

A

Optimization approach: add
a cost to push towards 0 or
1.

Dynamical approach: use a
function h. that will quickly
evolve towards 0 or 1.
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How to penalize intermediate values 7
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Vieira Cost penalization : usual concerning optimization with constraints (barrier
Introduction . methods...). In our case, we minimize the following cost:

Model
analysis

/ b (a(x))(1 — by (a(x)))dx
Q

Numerical Since h; : [0,1] — [0,1] = penalizes the values between 0 and 1, and h,(«)
e approximates 1q,.

Conclusion
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How to penalize intermediate values 7

nix)

1.0

0.8

0.6

0.4

0.2

0.0

—— RAMP
Sigmoid

—— SIMP, tau =1
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h, can be used to penalize intermedi-
ate values, and obtain h, ——— Q or

T—+00
1.
o SIMP : h-(x) = x7
o RAMP :
hr(x)=1—(1—x) 1_;-1:_TTX

o Sigmoid : h (x) =
1

T+exp(—7(x—x0))  1+exp(7x0)
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V-u=0 in Q
(u-V)u+Vp—Re *Au—Rife, +1h, (a)u=0 inQ
V- (uh) — V- (RePrtk(x,10,)V) =0 in Q

— « defines the distribution of solid.
Another problem: how does this affect the conductivity
function k(x,1q,)?
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Model

Usually, thermal conductivity = dis-
crete set of constants.

We would like to control the distribu-
tion of thermal conductivity also!
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51 — tau=10
—— tau=20
—— tau=30 /
4
— Advocates for the use of the
sigmoid interpolation function. Intro-
3 j duces a new control function ¢.
2
0 2 4

x
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We would like to solve:

miq? J(u,6,p)

such that:
V-u=0 in Q
(u-V)u+Vp—Re *Au—Rife, +nh (a)u=0 inQ
V- (uf) — V- (Re 'Pr ik (o, 0)VO) =0 in Q
« defines the distribution of solid, ¢ the thermal conduct-

ivity.

12/23



Existence of solution

Topology opt
of heated

channel

Alexandre We first study the existence of solutions to these equations. Suppose :
Inireduction a,¢ € Usg = {€ € BV(Q) [ 0 <&(x) <1][DE[(Q) < x}.
Model
S and h;, k. are bounded continuous functions with k(x) > kmin > 0.
ii"f,ﬂecal Given «, ¢ € Us,q, and given Ri, input velocity and heat flux small enough, there

Conclusion exists a solution (u, 0, p) € HY(Q)? x HY(Q) x L?(Q).

13/23



Optimality problem
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e uppose now we would like to minimize a functional J (o, ¢, u, 6, nder some
S Id like t functional J 6,p) Und

Introduction hypothesis, there exists an optimal solution. But more interesting:
Model
TELET Theorem

Definition

b and Define a sequence (a7, ¢}, uj, 05, py;) of global optimal solutions to the discretized
Opdmizatien problem. Then it converges (weak-*, weak-*, strong, strong, strong) to a global
N ical g g g
example. optimal solution of the continuous problem.

Conclusion
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max 0
a’¢ rout

(u, 8, p) solution of N.-S. + adv-diff
s.t. ¢ Uin(x,0) =18x(1 —x),po =3
Re =100, Ri =2, Pr = 0.71,n = 108.

Code done using Fenics, available online.
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Numerical example

You may have noticed that the control ¢ depends on the control «, since the

distribution of the thermal diffusivity in the solid depends.... On the distribution of

solid.
= Advocates for alternating directions!
Optimize first on «, then on ¢. In all numerical tests: it works way better.
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For this presentation, | want to compare two approaches:

@ Gradually increase 7 defining h; and k.
@ Keep 7 fixed and penalize more and more in the cost [, h-(a)(1 — h-(a)).

17/23



Topology opt
of heated
channel

Alexandre
Vieira

Introduction

Model
analysis
Definition
Existence and
discretization

Optimization

Numerical
example

Conclusion

Numerical example: function

— 600400

Temperature

| »

— 15601

E 2
— 1.0e+00

<
)
)3

<
)

&, |

(a) Velocity (b) Temperature

Figure: Result with function penalization (7 — +00).
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(a) Velocity

Figure:

L o5

—-1.0e04

(b) Temperature (c) k-

Result with cost penalization.

— 50e+00

— 45
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Conclusion

How to solve a complex topology optimization problem applied to fluid dynamics?

©

©

©

©

A nice and coherent way to approximate the problem.

Mathematically sound, and now fully analyzed.
Gives interesting numerical results.

Gives hints concerning ways to enhance it!
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Alexandre What is left to enhance?

Vieira

o Computations really long, may hardly converge.

Introduction

el o Works for some examples, and not for others: does their exist a uniform
analysis method for all problems?

Definition

o Optimal solution for the thermal conductivity still depends on the initial guess:
how to enhance this?

Numerical

example o Solution needs to be "cleaned" (how do we remove the holes without altering
Conelusion the optimality?).
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We have a preprint!

Topology Optimization for Steady-state anisothermal flow targeting solid with
piecewise constant thermal diffusivity

Alexandre Vieira, Alain Bastide, Pierre-Henri Cocquet
https://hal.archives-ouvertes.fr/hal-02569142
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Question time!
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