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Problem statement

The goal is to solve, with some decomposed scheme, the linear quadratic optimal control

min
1

2

∫
Ω
(y − ytarget)

2 +
α

2

∫
Ω
f 2

s.t.

{
Ay = −div (A(x)∇y) + div (b(x)y) + (c(x) + µ)y = F + f,

y|∂Ω = 0.

(1)

Here, we will assume that A ∈ L∞(Ω,Rd×d), b ∈ W 1,∞(Ω;Rd), c ∈ L∞(Ω), F ∈ L2(Ω) and µ > 0.

A direct approach
In order to find the solutions of this problem, it is usual to solve necessary and sufficient conditions
of optimality, expressed through the adjoint equation

A∗p∗ = y − ytarget on Ω,

p∗|∂Ω = 0,

αf + p∗ = 0,

The resolution of the coupled direct-adjoint equations through a decomposition technique has been
analyzed (see for instance Gong et al. 2022). However, we find this approach restrictive for several
reasons.

1 As with the indirect numerical methods for optimal control problems, focusing on resolving
the necessary conditions of optimality turns out to be limited for numerous
non-linear/non-quadratic optimization problems. This is mainly due to the fact that the
resulting system of optimality is expressed as a DAE, which can be hardly solved, even
without any decomposition. It may be even harder if you add further constraints on the state
and/or the control, resulting in searching for the solution of variational inequalities with
algebraic constraints.

2 Even if we focus on computing the gradient of the cost using only the direct and adjoint
equations (and therefore, forgetting about the algebraic equation for a moment), it is still
unclear how precise the computation of the states should be in order to compute an
approximate gradient, that will then be used in a descent algorithm. The parallelization of
such approach is also a source of questions.

Instead we will try a direct approach. As long as possible, we will stay in an optimization framework,
and decompose directly in the constraints.

Theorem 1: Equivalent decomposed formulation
Problem (1) is equivalent to

min
1

2

2∑
i=1

∥yi − ytarget∥2L2(Ωi)
+ α∥fi∥2L2(Ωi)

s.t.


Ayi = F + fi in Ωi,

yi|∂Ω = 0,

∂nAyi|Γ∩ = (−1)i+1g, i = 1, 2,

y1|Γ∩ = y2|Γ∩,

(2)

where Γ∩ = ∂Ω1 ∩ ∂Ω2.

Introduction of a virtual control
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Figure 1. Decomposition idea.

The equivalence (2) boils down to two main
ideas.

1 The solution should be continuous at
the interface Γ∩.

2 The normal derivative ∂nAyi becomes a
new unknown that must be controlled
with the same function, assuring the
continuity of the normal derivative.

An augmented Lagrangian approach

The biggest challenge consists in finding a way to solve (2) with the continuity constraint
y1|Γ∩ = y2|Γ∩.
For this, we choose an augmented Lagrangian approach, and check its convergence. The new
problem to solve now reads:

min
1

2

2∑
i=1

∥yi − ytarget∥2L2(Ωi)
+ α∥fi∥2L2(Ωi)

+

∫
Γ∩

λ(y1 − y2) +
ρ

2

∫
Γ∩

(y1 − y2)
2

s.t.


Ayi = F + fi in Ωi,

yi|∂Ω = 0,

∂nAyi|Γ∩ = (−1)i+1g, i = 1, 2,

(3)

Note that (3) can be solved in a highly parallel framework, since the computation of the state and
the update of the control can be done independently on each subdomain. Only the update of the
virtual control g would need a synchronization.
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Algorithm: update of the multiplier

Data: ρ0 ≥ 1, ω∗ << 1, η∗ << 1, τ > 1.
Choose an initial f 0, g0, λ0.

while ∥yk1 − yk2∥2L2(Γ∩)
≥ η∗, ∥∂f,gĴ+(fk, gk)∥ ≥ ω∗ do

Solve approximately (3) to find fk, gk and the associated p̃ki , in the sense that :

∥∂f,gĴ+(fk, gk)∥ =
2∑

i=1

∥αf k
i − p̃i∥2L2(Ωi)

+ ∥p̃k1 − p̃k2∥2L2(Γ∩)
≤ ωk.

if ∥y1 − y2∥2L2(Γ∩)
≤ ηk then

// Update multiplier;

Choose λk+1 = λ̄(fk, gk, λk, ρk) = λk + ρk(yk1 − yk2 );
Let ρk unchanged : ρk+1 = ρk;
Decrease ωk : ωk+1 = (ρk)−1ωk;

Decrease ηk : ηk+1 = (ρk)−1/2ωk;
else

// Increase penalization;

λk remains unchanged;
Increase ρk: ρk+1 = τρk;
Decrease ωk : ωk+1 = (ρk+1)−1;

Decrease ηk : ηk+1 = (ρk+1)−1/2;
end

end

Theorem 2: Convergence of the algorithm

Denote xk = (fk
1 , f

k
2 , g

k) the solutions produced by Algorithm 1, and suppose it converges to some
x∗. Define fk as f |Ωi

= fk
i , and yk the associated state. Then fk, yk converge to the solution of

(1).

A Fourier analysis of λk

Using a Fourier Analysis of the necessary and suffi-
cient conditions of optimality of (3) when F = 0,
ytarget = 0 (analysis of the error correction), one
may prove that the update of λ in the algorithm
produces iterates {λk}k such that

R :=
λ̂k+1

λ̂k
=

(
1− iρkα−1/2(D+ −D−)

−1
)−1

where D± =
√
±iα−1/2 + ω2, and λ̂ is the Fourier

transform of λ.
This coefficient shows how fast {λk} converges,
and it seems to converge fast!
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Figure 2. |R| for ρk = 3, α = 1.

Numerical example

We solve (1) with where Ω = [−1, 1]× [0, 1], ytarget(x1, x2) = sin(2πx1) sin(2πx2) and
F (x1, x2) = 8π2 sin(2πx1) sin(2πx2), α = 1. The optimal solution is f ∗ = 0, y∗ = ytarget. We
solve this problem using our augmented lagrangian method. The problem is discretized using Q1
elements on a structured uniform mesh, and the interface is placed at Γ∩ = {0} × [0, 1]. We
retrieve a second order convergence of the solution with respect to the discretization stepsize.
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(a) Error on the state function.
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(b) Error on the control function.

We see also the fast covergence of λ in the case of ytarget = F = 0, which is even better than
predicted by the theory.
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Figure 4. |λk+1/λk| for different iterations.
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