LiQuOFETI : a FETI-inspired method for elliptic quadratic optimal control

 problemsAlexandre Vieira ${ }^{1}$ Pierre-Henri Cocquet ${ }^{2}$

${ }^{1}$ Univ. of Reunion Island $\quad{ }^{2}$ Univ. of Pau

Problem statement

The goal is to solve, with some decomposed scheme, the linear quadratic optimal control

$$
\begin{array}{ll}
\min & \frac{1}{2} \int_{\Omega}\left(y-y_{\text {target }}\right)^{2}+\frac{\alpha}{2} \int_{\Omega} f^{2} \\
\text { s.t. }\left\{\begin{array}{l}
\mathcal{A} y=-\operatorname{div}(A(x) \nabla y)+\operatorname{div}(b(x) y)+(c(x)+\mu) y=F+f, \\
\left.y\right|_{\Omega \Omega}=0 .
\end{array}\right. \tag{1}
\end{array}
$$

Here, we will assume that $A \in L^{\infty}\left(\Omega, \mathbb{R}^{d \times d}\right), b \in W^{1, \infty}\left(\Omega ; \mathbb{R}^{d}\right), c \in L^{\infty}(\Omega), F \in L^{2}(\Omega)$ and $\mu>0$.

A direct approach
In order to find the solutions of this problem, it is usual to solve necessary and sufficient conditions of optimality, expressed through the adjoint equation

$$
\left\{\begin{aligned}
\mathcal{A}^{*} p^{*} & =y-y_{\text {target }} \text { on } \Omega, \\
\left.p^{*}\right|_{\partial \Omega} & =0, \\
\alpha f+p^{*} & =0,
\end{aligned}\right.
$$

The resolution of the coupled direct-adjoint equations through a decomposition technique has been analyzed (see for instance Gong et al. 2022). However, we find this approach restrictive for several reasons.
■ As with the indirect numerical methods for optimal control problems, focusing on resolving the necessary conditions of optimality turns out to be limited for numerous non-linear/non-quadratic optimization problems. This is mainly due to the fact that the resulting system of optimality is expressed as a DAE, which can be hardly solved, even without any decomposition. It may be even harder if you add further constraints on the state and/or the control, resulting in searching for the solution of variational inequalities with algebraic constraints.
E Even if we focus on computing the gradient of the cost using only the direct and adjoint equations (and therefore, forgetting about the algebraic equation for a moment), it is still unclear how precise the computation of the states should be in order to compute an approximate gradient, that will then be used in a descent algorithm. The parallelization of such approach is also a source of questions.
Instead we will try a direct approach. As long as possible, we will stay in an optimization framework, and decompose directly in the constraints.
Theorem 1: Equivalent decomposed formulation
Problem (1) is equivalent to

$$
\begin{align*}
& \min \frac{1}{2} \sum_{i=1}^{2}\left\|y_{i}-y_{\operatorname{target}}\right\|_{L^{2}\left(\Omega_{i}\right)}^{2}+\alpha\left\|f_{i}\right\|_{L^{2}\left(\Omega_{i}\right)}^{2} \\
& \text { s.t. }\left\{\begin{aligned}
\mathcal{A} y_{i} & =F+f_{i} \quad \text { in } \Omega_{i}, \\
y_{i} \mid \partial \Omega & =0, \\
\partial_{\mathrm{n}_{A}} y_{i} \mid \Gamma_{\Gamma_{n}} & =(-1)^{i+1} g, i=1,2, \\
y_{1} \mid \Gamma_{\Gamma_{n}} & =y_{2} \mid \Gamma_{\Gamma_{n}},
\end{aligned}\right. \tag{2}
\end{align*}
$$

where $\Gamma_{\cap}=\overline{\partial \Omega_{1}} \cap \overline{\partial \Omega_{2}}$

	Introduction of a virtual control
Figure 1. Decomposition idea.	The equivalence (2) boils down to two main ideas.
The solution should be continuous at the interface Γ_{\cap}. The normal derivative $\partial_{n} y_{i}$ becomes a new unknown that must be controlled with the same function, assuring the continuity of the normal derivative.	

An augmented Lagrangian approach

The biggest challenge consists in finding a way to solve (2) with the continuity constraint $y_{1}\left|\Gamma_{n}=y_{2}\right|_{\Gamma}$
For this, we choose an augmented Lagrangian approach, and check its convergence. The new problem to solve now reads:

$$
\begin{align*}
& \min \frac{1}{2} \sum_{i=1}^{2}\left\|y_{i}-y_{\text {target }}\right\|_{L^{2}\left(\Omega_{i}\right)}^{2}+\alpha\left\|f_{i}\right\|_{L^{2}\left(\Omega_{i}\right)}^{2}+\int_{\Gamma_{n}} \lambda\left(y_{1}-y_{2}\right)+\frac{\rho}{2} \int_{\Gamma_{n}}\left(y_{1}-y_{2}\right)^{2} \\
& \text { s.t. }\left\{\begin{array}{c}
\mathcal{A} y_{i}=F+f_{i} \quad \text { in } \Omega_{i}, \\
\left.y_{i}\right|_{\Omega \Omega}=0, \\
\left.\partial_{\mathbf{n}_{A}} y_{i}\right|_{\Gamma_{n}}=(-1)^{i+1} g, i=1,2,
\end{array}\right. \tag{3}
\end{align*}
$$

Note that (3) can be solved in a highly parallel framework, since the computation of the state and the update of the control can be done independently on each subdomain. Only the update of the virtual control g would need a synchronization.

References

[ion Gong, W., F. Kwok, and Z. Tan (2022). Convergence analysis of the Schwarz alternating method for unconstrained elliptic optimal control problems. arXiv: 2201.00974 [math .NA]

```
Algorithm: update of the multiplier
```



```
Solve approximately (3) to find f}\mp@subsup{f}{}{k},\mp@subsup{g}{}{k}\mathrm{ and the associated }\mp@subsup{\tilde{p}}{i}{k}\mathrm{ , in the sense that
    |\partialf,g}\mp@subsup{\hat{J}}{}{+}(\mp@subsup{f}{}{k},\mp@subsup{g}{}{k})|=\mp@subsup{\sum}{i=1}{2}|\alpha\mp@subsup{f}{i}{k}-\mp@subsup{\tilde{p}}{i}{}\mp@subsup{|}{\mp@subsup{L}{}{2}(\mp@subsup{\Omega}{i}{\prime})}{2}+|\mp@subsup{\tilde{p}}{1}{k}-\mp@subsup{\tilde{p}}{2}{k}\mp@subsup{|}{\mp@subsup{L}{}{2}(\mp@subsup{\Gamma}{n}{})}{2}\leq\mp@subsup{\omega}{k}{}
    if |y\mp@subsup{y}{1}{}-\mp@subsup{y}{2}{}\mp@subsup{|}{\mp@subsup{L}{}{2}(\mp@subsup{\Gamma}{n}{})}{2}\leq\mp@subsup{\eta}{k}{}\mathrm{ then}
        // Update multiplier;
    Choose }\mp@subsup{\lambda}{}{k+1}=\overline{\lambda}(\mp@subsup{f}{}{k},\mp@subsup{g}{}{k},\mp@subsup{\lambda}{}{k},\mp@subsup{\rho}{}{k})=\mp@subsup{\lambda}{}{k}+\mp@subsup{\rho}{}{k}(\mp@subsup{y}{1}{k}-\mp@subsup{y}{2}{k})
    Let }\mp@subsup{\rho}{}{k}\mathrm{ unchanged : }\mp@subsup{\rho}{}{k+1}=\mp@subsup{\rho}{}{k}\mathrm{ ;
    Decrease }\mp@subsup{\omega}{k}{}:\mp@subsup{\omega}{k+1}{}=(\mp@subsup{\rho}{}{k}\mp@subsup{)}{}{-1}\mp@subsup{\omega}{k}{}
    Decrease }\mp@subsup{\eta}{k}{}:\mp@subsup{\eta}{k+1}{}=(\mp@subsup{\rho}{}{k}\mp@subsup{)}{}{-1/2}\mp@subsup{\omega}{k}{
else
                                    // Increase penalization;
    \lambdak
    Increase }\mp@subsup{\rho}{}{k}:\mp@subsup{\rho}{}{k+1}=\tau\mp@subsup{\rho}{}{k}\mathrm{ ;
    Decrease }\mp@subsup{\omega}{k}{}:\mp@subsup{\omega}{k+1}{\prime}=(\mp@subsup{\rho}{}{k+1}\mp@subsup{)}{}{-1}
    Decrease \eta}\mp@subsup{\eta}{k}{:}\mp@subsup{\eta}{k+1}{\prime}=(\mp@subsup{\rho}{}{k+1}\mp@subsup{)}{}{-1/2
end
end
```


Theorem 2: Convergence of the algorithm

Denote $x^{k}=\left(f_{1}^{k}, f_{2}^{k}, g^{k}\right)$ the solutions produced by Algorithm 1, and suppose it converges to some x^{*}. Define f^{k} as $\left.f\right|_{\Omega_{i}}=f_{i}^{k}$, and y^{k} the associated state. Then f^{k}, y^{k} converge to the solution of (1).

A Fourier analysis of λ

Using a Fourier Analysis of the necessary and sufficient conditions of optimality of (3) when $F=0$, $y_{\text {target }}=0$ (analysis of the error correction), one may prove that the update of λ in the algorithm produces iterates $\left\{\lambda^{k}\right\}_{k}$ such that

$$
R:=\frac{\hat{\lambda}^{k+1}}{\hat{\lambda}^{k}}=\left(1-i \rho^{k} \alpha^{-1 / 2}\left(D_{+}-D_{-}\right)^{-1}\right)^{-1}
$$

where $D_{ \pm}=\sqrt{ \pm i \alpha^{-1 / 2}+\omega^{2}}$, and $\hat{\lambda}$ is the Fourier transform of λ.

Figure 2. $|R|$ for $\rho^{k}=3, \alpha=1$.

This coefficient shows how fast $\left\{\lambda^{k}\right\}$ converges, and it seems to converge fast!

Numerical example

We solve (1) with where $\Omega=[-1,1] \times[0,1], y_{\text {target }}\left(x_{1}, x_{2}\right)=\sin \left(2 \pi x_{1}\right) \sin \left(2 \pi x_{2}\right)$ and $F\left(x_{1}, x_{2}\right)=8 \pi^{2} \sin \left(2 \pi x_{1}\right) \sin \left(2 \pi x_{2}\right), \alpha=1$. The optimal solution is $f^{*}=0, y^{*}=y_{\text {target. }}$. We solve this problem using our augmented lagrangian method. The problem is discretized using Q1 elements on a structured uniform mesh, and the interface is placed at $\Gamma_{\mathrm{n}}=\{0\} \times[0,1]$. We retrieve a second order convergence of the solution with respect to the discretization stepsize.
10^{-4}
10^{-5}
10^{-6}
10^{-7}
10^{-8}

10^{-5}			
10^{-6}	$\bullet\\|f\\|_{\infty}$		
10^{-7}			
10^{-8}			

$10^{-2} h_{1}$

(a) Error on the state function.

(b) Error on the control function.

We see also the fast covergence of λ in the case of $y_{\text {target }}=F=0$, which is even better than predicted by the theory.

Figure 4. $\left|\lambda^{k+1} / \lambda^{k}\right|$ for different iterations.

