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06108 Nice cedex 2, France

DIDIER CLAMOND
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Abstract. We consider the problem of recovering the surface wave profile from noisy bot-
tom pressure measurements with (a priori unknown) arbitrary pressure at the surface. With-
out noise, the direct approach developed in [13] provides an effective way to recover the
sea surface. However, the assumption of analyticity for the measured pressure renders this
method inefficient in the presence of noise. In order to address this issue, we introduce here an
optimisation procedure based on the minimisation of a distance between a recovered bottom
pressure and its measurement. Such method proves to be well-designed to handle perturbed
signals. We illustrate the effectiveness of this approach in the recovery of gravity-capillary
waves from unfiltered noisy data.

1. Introduction

Monitoring the surface of the ocean is a timely concern for climatic and environmental con-
siderations, especially in coastal regions where large waves represent a risk when approaching
the shoreline. For this reason, in the second half of the last century, some scientists emit-
ted the idea of sending probes at the seabed to measure the pressure and reconstruct the
surface profile from these data [3]. This procedure allows to determine the shape of water-
waves without intrusive observations, although it necessitates to solve an inverse problem
within an unknown domain. Such problem is notoriously challenging, notably because of its
ill-posedness (any disturbance grows exponentially from the bottom to the free surface).
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Historically, the first attempt to solve this problem relied on hydrostatic theory and as-
sumed the surface elevation as being proportional to the weight of the water column. Later,
from a linear approximation of the problem, an explicit expression for the surface was given in
terms of a certain pressure transfer function [23]. Noticeably, a recent work derived an exact
formula for steady rotational waves using linear theory [21]. However, both these assumptions
were not suited to describe large waves or of non-trivial profile (i.e. not sinusoidal). It was
only recently that the first results on the full nonlinear problem were obtained [25]. This
study resulted in a nonlocal integro-differential equation for the surface elevation that was
highly difficult to solve in practice without considering asymptotic limits. Slightly after this
work, an efficient procedure for the recovery of nonlinear steady water-waves was formulated
[10, 11]. This approach relies on the assumption that bottom pressure can be analytically
continued as a holomorphic function, allowing to express the surface elevation as a solution
of an algebraic equation. Numerical investigation of this method was done for extreme waves
[11] and it was rigorously proved to converge in the case of steady surface gravity waves from
a mere fixed-point algorithm [12]. Subsequently, this theory was extended to handle more
complex configurations, such as the presence of a linear shear current [14], the possibility of
overhanging waves [22] or the influence of arbitrary pressure at the surface [13]. We note the
proof for the existence of nonlinear water-waves with constant vorticity and overturning wave
profiles [16, 15].

The method originally developed in [11] consistently proved its effectiveness in terms of ac-
curacy, computation time and accessibility, even considering technical difficulties (stagnation
points, limiting waves, capillary effects, etc.). However, the formulation inherently depends
on the analyticity of the measurement, which is not the case in real-life observations where
the presence of external noise is inevitable. Moreover, since we are performing most of the
calculations in the complex plane, then it prohibits us to directly extend this approach to
the three-dimensional configuration. For all these reasons, we introduce a new and innovative
formulation, based on an optimisation method, to solve this constrained inverse problem with
noise in the measurements.

To the best of authors’ knowledge, surface wave recovery within an optimisation framework
has never been considered in the literature. As it turns out, one can relate this reconstruction
problem to an optimal control approach, where the goal is to find a set of parameters or
functions minimising a given cost functional under some dynamical constraints. (We refer
interested readers to [17] for an introduction on this subject.) In the current inverse problem,
the undetermined function is the surface profile and the cost functional will be the distance
to the observation. In this sense, this problem is close to some shape optimisation or topology
optimisation (TO) configurations. These problems consist in finding the optimal shape of an
obstacle immersed in a moving fluid (see [1, 19] and references therein for an overview on
the numerical resolution of TO problems applied to several physical settings). Although it
yields satisfactory results in general, the main drawback of the shape optimisation problem
comes from its numerical complexity. This is because the underlying dynamical constraints
are usually discretised using a Finite Element method, which relies on a prescribed mesh
adapted to the shape of the obstacle. In this setting, the shape of the immersed obstacle is
updated at each iteration, leading to an expensive recalculation of the mesh [2]. Thus, all
techniques avoiding this costly procedure necessarily enhance the formulation.

The method we consider in this work relies on a predefined discretisation of some analytical
expressions we derived in an earlier work, from a boundary integral method [22]. Combining
this analytic preprocessing within the optimisation framework has never been explored before
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and appears to be a suitable and innovative approach for the surface reconstruction problem.
Moreover, the algorithm we develop is easily extendable to a broad range of situations (e.g.
adding further physical assumptions or noise in the measurements) and yields an excellent
agreement with the sought solution (comparable to the results obtained in [13] using the
holomorphic extension).

This article is articulated around the presentation, application and comparison of two
different methods to reconstruct surface waves when considering noise or not. Section 2
introduces the equations of motion and boundary conditions for the system of interest. Then,
sections 3 and 4 describe in details the direct and optimisation approaches, respectively, and
how to implement them numerically in an efficient way. A numerical example is treated in
section 5 to explore and compare thoroughly these methods. Finally, we discuss about the
results we obtained and on the eventual improvements and future extensions in section 6.

2. Problem statement

We consider a water wave of permanent form, travelling at constant phase speed c at the
free surface of a homogeneous fluid. The bottom of the fluid layer being flat, we set ourselves
in the Galilean frame of reference moving with the wave, so that motion appears stationary for
the observer. The fluid is considered inviscidand incompressible, the motion is irrotational and
we assume the free surface and the seabed to be impermeable. These boundaries are located
at y “ ηpxq for the surface and y “ ´d for the seabed, with y being the vertical coordinate
and d a constant mean depth. We also assume the streamwise direction to have an infinite
extension. Hence, the domain of definition is given by Ω “ tpx, yq : x P R,´d ď y ď ηpxqu.
When the motion is periodic, we introduce the wave period L “ 2π{k (the limit k Ñ 0`

corresponding to a solitary wave) where k is a wavenumber. Thus, we define an Eulerian
averaging operator to fix the mean water level at y “ 0, i.e.

⟨η⟩ :“ k

2π

ż

P
ηpxqdx “ 0, (1)

where the path of integration is P “ r´π{k, π{ks.
In the following, we use the subscripts ‘s’ and ‘b’ to denote the restriction of fields at

the surface and the bottom, respectively. Alternatively, the subscript x is used to express
horizontal derivatives (e.g. ηx :“ dη{dxq. We consider the pressure at the surface as an
undetermined function of the x-coordinate, entering the equations through the dynamical
condition (supplemented with kinematic condition). The velocity field u “ pu, vq is governed
by the steady Euler equations (expressing the conservation of mass and linear momentum)
with associated boundary conditions. These assumptions yield the equations of motion

∇ ¨ u “ 0, in Ω (2a)

u ¨ ∇u ` ∇p ` g “ 0, in Ω (2b)

u ¨ n ´ u ¨ ∇η “ 0 at y “ ηpxq, (2c)

p “ pspxq at y “ ηpxq, (2d)

u ¨ n “ 0 at y “ ´d, (2e)

where p is a relative pressure with zero mean-value at the surface (i.e. xpsy “ 0) and scaled
with the constant background density ρ0. The unit normal vector n is directed outward and
g “ p0, gq represents the restoring gravity force, with g the acceleration due to gravity (acting
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downwards). By integrating equation (2b), we recover the well-known Bernoulli principle
(expressing the conservation of mechanical energy), leading (in the irrotational case) to

2pp ` gyq ` u2 ` v2 “ B, (3)

where B is the Bernoulli constant. From this principle and using the mean operator (1),
we establish the important relations xu2s ` v2s y “ B and xpby “ gd. Finally, we introduce
the complex velocity wpzq :“ upx, yq ´ ivpx, yq that is holomorphic in the z-coordinate (with
z :“ x` iy). We note that the free surface path is given by the curvilinear abscissa zs “ x` iη
whereas the solid lower boundary is described by zb “ x ´ id.

The principal objective of this work is to recover the surface wave profile ηpxq, the Bernoulli
constant B and the surface pressure pspxq from a given pressure observation pobsb pxq at the
seabed. The wave period L (or equivalently the wavenumber k) is also determined from
the bottom pressure by least-square minimisation [14]. This inverse problem is notoriously
difficult to solve due to the strong nonlinearities and its ill-posed nature (i.e. disturbances
are exponentially growing to the surface). Our first approach, developed in a series of articles
[10, 11, 12, 13, 14, 22], is a direct approach set in the physical space and where analytical
expressions (integro-differential in general) are given in terms of the unknown surface wave
profile and surface pressure.

3. Numerical procedure: direct approach

3.1. Cauchy integral formula. Computing steady surface waves from a boundary integral
formula is an idea initiated in a seminal work by Da Silva and Peregrine [18]. Hereafter,
we present a similar procedure to recover an implicit expression for the surface elevation
using complex analysis [22]. We start by giving the Cauchy integral formula, written for a
holomorphic function Ξpzq, in its classical form

iϑΞpzq “ P.V.

¿

Ξpz1q

z1 ´ z
dz1 “

ż 8

´8

Ξ1
bdx

1

z1
b ´ z

´

ż 8

´8

p1 ` iη1
xqΞ1

sdx
1

z1
s ´ z

, (4)

with primes denoting the dependence on the dummy variable — e.g. Ξ1
s :“ Ξspx

1q. The inner
angle ϑ is 2π, 0 or π when the coordinate z lies respectively inside, outside and at the smooth
boundary of the domain Ω.

Whenever the holomorphic function is purely real at the bottom boundary (i.e. ImtΞbu “

0), we may use the method of images (Schwarz reflection principle [24]) on (4) to obtain

ϑΞpzq “ k

ż

C
L0teikpz1

s´zquΞ1
sdz

1
s ` k

ż

C
L0teikpz´z̄1

s`2idquΞ̄1
sdz̄s

1 ` π

〈
Ξs

dzs
dx

` Ξ̄s
dz̄s

1

dx

〉
, (5)

where Lν is the νth polylogarithm [22] and z̄ the complex conjugate of z. The integration
path is given by C “ tzspxq : x P r´π{k, π{ksu Ă C.

Equation (5) possesses a strong (polar) singularity causing technical difficulties when com-
puting the integral numerically. Thus, we use the integrated form of the polylogarithm to
replace the polar term with a logarithmic singularity [22]. We obtain

ϑΞpzq “ i

ż

C
BzL1teikpz1

s´zquΞ1
sdz

1
s ` i

ż

C
BzL1teikpz´z̄1

s`2idqu Ξ̄1
sdz̄s

1 ` π

〈
Ξs

dzs
dx

` Ξ̄s
dz̄s

1

dx

〉
, (6)
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Computing the latter expression at the free surface, one getss

Ξs dzs “
i

2π
d

„
ż

C
L1teikpz1

s´zquΞ1
s dz

1
s `

ż

C
L1teikpz´z̄1

s`2idqu Ξ̄1
s dz̄s

1

ȷ

`
dzs
2

〈
Ξs

dzs
dx

` Ξ̄s
dz̄s

1

dx

〉
. (7)

3.2. Expressions for computing steady surface waves and bottom pressure. From
Bernoulli’s principle (3), the complex velocity at the surface ws is given explicitly by

ws “ σpdz̄s{dxq
a

pB ´ 2ps ´ 2gηq{|dzs{dx|2, (8)

where σ “ ¯1 denotes the direction of the current respectively to the increasing/decreasing
x-coordinate.

Let us consider the holomorphic function Ξ “ w ` c (c being an arbitrary definition of the
phase speed). The left-hand side of (7) follows directly from (8) as

Ξsdzs “ pωh ` cqdzs ` σ
a

pB ´ 2ps ´ 2gηq{|dzs{dx|2dx, (9)

where h :“ η ` d is the wave height. We note that the radicand is purely real since B ě

2||ps ` gη||8 for all waves (according to Bernoulli’s relation).
After integration of expression (7) – retaining the imaginary part only – we obtain an

equation for the computation of the free surface

ωη2

2
´ η

〈
us |udzs{dx|

2
〉

´
σ

2π

ż

P
RetL1u

a

pB ´ 2p1
s ´ 2gη1q{|dz1

s{dx
1|2dx1 ´ K “ 0, (10)

where K is a constant of integration, recovered by enforcing the mean-level condition [22].
For the sake of brevity, we also introduced the following notation

Lν :“ Lν

“

eikpz1
s´zsq

‰

´ Lν

“

eikpzs´z̄1
s`2idq

‰

.

As one can notice, expression (10) is not dependent on the choice of phase speed c, as expected
from the Galilean invariance of the problem.

Equation (5) and the Schwarz reflection principle also let us find an expression for the bot-
tom velocity. Consider Ξ “ w as the holomorphic function in (5) and evaluate the expression
at the bottom (with now ϑ “ 2π). Since ub is a real function of the horizontal coordinate,
we use the method of images to recover its explicit form, which leads to the formula

ubpxq “
ik

4π

„
ż

C
cot

ˆ

k
z1
s ´ zb
2

˙

w1
sdzs ´

ż

C
cot

ˆ

k
z̄1
s ´ zb ´ 2id

2

˙

w̄1
sdz̄s

1

ȷ

. (11)

This bottom velocity ub is used in Stokes’ first definition of the phase speed

c1 “ ´ ⟨ub⟩ . (12)

3.3. Holomorphic functions and recovery formula. As done numerous time in previous
articles [10, 11, 12, 13, 14, 22], we introduce a holomorphic complex pressure function Ppzq

by analytic continuation in the domain Ω. Using Bernoulli’s principle written for the complex
velocity, it yields an expression for the complex pressure as

Ppzq :“ gd `
B ´ w2

2
. (13)
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Similarly, we introduce the antiderivative of P defined by

Qpzq :“

ż z

z0

“

Ppz1q ´ gd
‰

dz1 “
1

2

ż z

z0

“

B ´ wpz1q2
‰

dz1, (14)

where z0 is an arbitrary constant.
In practice, these holomorphic functions are easily recovered from the given pressure mea-

surement by fitting the data over a suitable eigenbasis (one leading to the most accuracy with
the lowest order of quadrature). Assuming a periodic motion, we fit these data with a Fourier
polynomial basis before performing an analytic continuation of the pressure field. Evaluated
at the surface, it yields

Ppzq “ pbpz ` idq « gd `

N
ÿ

|n|ą0

pne
inkpz`idq. (15)

From this definition, we simply integrate once and recover the second holomorphic function
as

Qspxq “

ż x

0

“

Pspx
1q ´ gd

‰

dx1 «

N
ÿ

|n|ą0

ipn
nk

e´nka ´ einkpx`iηq

enkd
, (16)

where a is the amplitude of the wave at the crest (arbitrarily located at x “ 0).
In the context of the direct approach, we exploit a relation derived in a recent work as our

general recovery formula [13]. This expression (not involving any differential terms of η) is
given by

RetQsu “
1

2

ż x

0

“

B ´
ˇ

ˇB ´ 2
`

P1
s ´ gd

˘ˇ

ˇ

‰

dx1. (17)

As one can notice, surface pressure has been eliminated from the recovery formula (17).
This is because the Cauchy–Riemann system gives us two equations (the real and complex
parts) that can be combined to suppress either the surface pressure of the surface elevation
[13]. However, it is still necessary to fix Bernoulli’s constant by adding a direct measure
(phase speed, wave height, etc.) or by assuming the physics at the surface (e.g. capillary or
flexural effects). For this work, we assume Stokes’s first definition of the phase speed to be a
given parameter. Thus, solving the inverse problem reduces to finding the zeros of the set of
equations (1), (12) and (17).

3.4. The Levenberg–Marquardt procedure. In practice, solving the inverse problem
with a direct approach is fairly straightforward. It only requires to introduce a quadrature
for numerical integration (we choose the trapezoidal quadrature) and then insert the different
expressions in almost any root-finding algorithm (e.g. the fsolve function in Matlab). Nu-
merically, η “ tηiui is a vector defined at these quadrature points. Because this problem is
notoriously challenging to solve, we decide to use a Levenberg–Marquardt algorithm, which
has shown its efficiency before (see [10, 11, 12, 13, 14, 22]).

We quickly sketch this algorithm. Solving the inverse problem directly (for the surface
profile) can be summarised as finding the root of equation Epηq “ 0 for some function E . This
is equivalent as minimising the functional J pηq :“ 1

2}Epηq}22 “ 1
2E ¨ E . There are two common

ways for this, both being iterative methods. Assume we are given an initial guess η0 with the
overscript standing for the iteration step. For any iteration ℓ, we will denote Eℓ :“ Epηℓq and
BEℓ

Bη
:“ BE

Bη pηℓq the Jacobian matrix of E computed at ηℓ.
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- The first method, the Gradient Descent (GD), consists in computing the negative
gradient of the function J pηq at ηℓ in order to compute ηℓ`1. Introducing an increment
δηGD , expression for the gradient follows immediately

´
BJ
Bη

pηℓq “ ´

ˆ

BEℓ

Bη

˙⊺

Eℓ “ δη
GD

,

with A⊺ denoting the transpose of a matrix A and where BEℓ{Bη can be approximated
using finite differences. This gradient is then used in an update formula as ηℓ`1 “

ηℓ ` αδη
GD

, where α is the length along the descent direction.

- The second procedure, the Gauss–Newton (GN) method, originates from a Taylor
expansion of E at the first order. For some increment δηGN , it yields

J pηℓ ` δηGNq «
1

2

ˆ

Eℓ `
BEℓ

Bη
δηGN

˙

¨

ˆ

Eℓ `
BEℓ

Bη
δηGN

˙

«J pηℓq ` δηGN ¨

ˆ

BEℓ

Bη

˙⊺

Eℓ `
1

2

›

›

›

›

BEℓ

Bη
δηGN

›

›

›

›

2

2

.

We then minimise the function δηGN ÞÑ J pηℓ ` δηGNq to find the optimal increment,

which is equivalent to finding the root of BJ
Bδη

GN
pηℓ ` δηGNq “ 0. After some algebraic

manipulations, it gives the linear system
ˆ

BEℓ

Bη

˙⊺
BEℓ

Bη
δηGN “ ´

ˆ

BEℓ

Bη

˙⊺

Eℓ “ δηGD . (18)

The Levenberg–Marquardt algorithm can be seen as an interpolation between the Gradient
Descent and the Gauss–Newton method. It consists in solving, instead of (18), the Levenberg–
Marquardt (LM) update as:

„ˆ

BEℓ

Bη

˙⊺
BEℓ

Bη
` λI

ȷ

δηLM “ δηGD , (19)

where I is the identity matrix and λ is a damping parameter. A large value of λ results in an
update closer to the Gradient Descent increment, while a small value of λ makes the update
closer to the Gauss–Newton increment. The damping parameter is updated at each iteration.
It usually starts large and becomes slower as the iterations converge towards the solution. This
procedure is used to stabilize the iterations when compared to the Gauss–Newton algorithm.
The interested reader can find a more thorough presentation of the Levenberg–Marquardt
algorithm in [6].

4. Numerical procedure: optimisation approach

4.1. An optimisation formulation. The previous approach relies on the assumption that
the pressure function can be analytically continued. Without this assumption, we can for-
mulate the problem of recovering the surface elevation with bottom pressure measurements
within an optimisation frame. We resume the computations from (12). From Bernoulli’s
principle, we note that given η, ps and B, we can compute the pressure at the seabed using
the formula:

pbpxq “ gd ´
B

2
´

k2

32π2

„
ż

C
cot

ˆ

k
z1
s ´ zb
2

˙

w1
sdzs ´

ż

C
cot

ˆ

k
z̄1
s ´ zb ´ 2id

2

˙

w̄1
sdz̄s

1

ȷ2

. (20)
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This procedure is sketched in figure 1 as an input–output process.

Input
η, ps,
B

Black box using (20)
Output

pbpη, ps, Bq

Figure 1. Sketch of the procedure used for computing the bottom pressure
from surface information.

Ideally, we would like to find the input leading to pbpη, ps, Bq “ pobsb . However, this strict
equality may be irrelevant (due to noise in the observations for instance) and several solutions
η, ps and B may exist (although not being physical). Thus, we will rather minimise some
distance between pbpη, ps, Bq and pobsb , while constraining the fields η, ps and B to respect
the equality constraint (10) and the mean-level condition for η. This is summarised as the
following minimisation problem

min
η,ps,B

Fpη, ps, Bq “

ż

P

”

pbpη, ps, Bq ´ pobsb

ı2

s.t. Gipη, ps, Bq “ 0, i “ 1, 2, 3.

(21)

where G1, G2 and G3 correspond to (1), (10) and (12), respectively. As mentioned, the
bottom pressure pb is computed from expression (20).

4.2. The augmented Lagrangian approach. In this section, we explain the augmented
Lagrangian algorithm, that we use in order to solve the problem (21). This is an itera-
tive method that starts with an initial guess pη0, p0s , B

0q and then, based on the distance
}pbpη, ps, Bq ´ pobsb }2L2pPq

, will produce a new iteration pη1, p1s , B
1q closer to the minimal solu-

tion. The procedure is then iterated. The main issue with (21) are the equality constraints
that should be handled with a specific procedure. A broad range of algorithms are specifically
designed for that, such as the SQP method or the barrier methods; see [8] for a detailed review
on the numerical algorithms to solve constrained optimisation problems. In our context, we
opted for the augmented Lagrangian technique because of its ability to transform constrained
problems into an unconstrained one (with a penalty term). We introduce in the following this
algorithm in a generic framework.

Given functions F and G, suppose we would like to solve the generic optimisation problem

min
x

Fpxq s.t. Gipxq “ 0, i P J . (22)

where J is some subset of N. The augmented Lagrangian algorithm offers a way to handle
the constraint Gpxq “ 0. It consists in taking an approximate Lagrange multipliers λℓ

i (in the
sense of optimisation) and coefficients ρℓi to solve the optimisation problem

xℓ P argmin
x

Fpxq `
ÿ

iPJ
λℓ
iGipxq `

ÿ

iPJ

ρℓi
2

|Gipxq|2.

This procedure turns the constraint problem (22) into an unconstrained one, with the same
cost function F but adding the scalar product λiGipxq and the quadratic penalization term
1
2ρ

ℓ
i |Gipxq|2. This unconstrained minimisation problem, which will induce inner iterations, can

then be solved numerically using methods for unconstrained minimisation problems ; we used
the interior point method as implemented by the function fmincon in Matlab (see again [8]
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(a) (b)

(c) (d)

Figure 2. Relative errors versus the number of Fourier modes N for (a): B,
(b): η and (c): ps. We give the running time (in hours) in panel (d). The
circled red lines correspond to the direct approach. The crossed blue (squared
magenta) lines represent the solutions from the optimisation method with a
low (high) limit on the number of function evaluations.

for more details on this method). Based on xℓ and for some tolerance µℓ, the multiplier or
the coefficients are updated. For each i P J , it follows that

- If |Gipxq| ď µℓ, then λℓ`1
i “ λℓ

i ` ρℓiGipxq and ρℓ`1
i “ ρℓi (the solution respects suffi-

ciently the constraints and the multiplier is thus updated).

- Else, λℓ`1
i “ λℓ

i and ρℓ`1
i “ τρℓi for some τ ą 1 (the constraints are too much violated,

so we increase the weight of the quadratic penalization).

An analysis of this algorithm and a proof of convergence can be found in [5].
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5. Numerical experiments

We now test numerically the two methods (direct and optimisation) on a common example
of surface profile recovery. This example was already treated in [13] and appeared as one
of the most difficult case considered. We mention that every computations were made on a
processor AMD EPYC 7542 @1.5Ghz with 512GB of RAM.

5.1. Recovery of capillary waves. When considering a fluid with surface tension γ, the
analytic form of the pressure at the surface is given by the formula

ps :“ ´γκ “ ´
γηxx

p1 ` η2xq
3{2

, (23)

where κ is the curvature of the interface. It was shown recently [13] that in this context, recov-
ery of the surface elevation is a challenging task due to the presence of high-order derivatives
in the nonlinear terms. Nevertheless, we demonstrate the efficiency of both approaches by
considering a gravity-capillary wave with γ “ 1{3, σ “ ´1 and L{d “ 6π. The solutions of
reference B˚, η˚ and p˚

s are computed from an algorithm adapted from [22] with the total
wave height being fixed at H{d “ 0.1. For the initial guess, we use the solutions given by
linear theory for both numerical approaches. In addition, for the Levenberg–Marquardt algo-
rithm, we used an initial damping parameter set to λ “ 0.05. The initial parameters for the
optimisation algorithm are set to λ0

i “ 0, ρ0i “ 10 and τ0 “ 2.
First, we let vary the number of Fourier modes N and observe the eventual convergence

of the solutions. In figure 2, we display with circled red lines the relative errors on B, η and
ps, as well as the running time, for the direct approach. We superpose the results from the
optimisation approach with a low (high) limit on the number of function evaluations in the
inner iterations using crossed blue (squared magenta) lines. All these data are summarised
in the rows of table 1 without noise. As one can notice in figure 2, the accuracy of the direct
approach continues to increase with N whereas the errors from the optimisation method
slightly grow. However, restricting the number of function evaluations on the latter allows
for faster (and more accurate) results when the number of modes is small enough. Finally,
we notice that the computation time is in favor of the direct approach by far („ 100 times
faster).

Eventually, we compare the recovered solutions and the reference values in figure 3. Starting
from the bottom pressure in panel 3a, we obtain the surface elevation and the surface pressure
by direct approach (red crosses) or by optimisation method (blue circles). Both results are
in excellent agreement with the reference value given by the dark green curves.

5.2. Addition of noise in the measurement. We now test the stability of the method to
random perturbations of the observation signal. For this, we add a white noise to the pressure
of reference pobsb and try to recover solutions at the surface and Bernoulli’s constant from this
noisy data. This is of significant importance from an engineering point of view, since most
measurements will necessarily contain noise.

Starting from the pressure field pobsb without noise, we create a noisy signal p̌obsb “ pobsb `

ε. Here, the white noise ε „ N p0, STDq is designed using the standard deviation STD “
1
3ϵpmaxppobsb q ´minppobsb qq, where ϵ will be some prescribed error. This yields an error on the

signal which is at most ϵpmaxppobsb q ´ minppobsb qq with a 99% confidence. In our experiments,
we use ϵ “ 1%, 5% and 10%. All results are shown in Table 1. The errors should be understood
as the relative error (with respect to the sup norm) to the expected solutions without noise.
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(a)

(b)

(c)

Figure 3. (a): Bottom pressure of reference, computed from expression (20).
The dashed-dotted black line represents the hydrostatic value gd. (b,c): Recov-
ered surface pressure and surface elevation from direct approach (red crosses)
and optimisation approach (blue circles). The reference values are displayed
in dark green lines. All computations were made with N “ 512.

As deduced from these results, the direct approach fails to recover the surface even with the
smallest amount of noise added. In contrast, the optimisation process produces results in
better agreement with the solution sought. This can also be emphasised from figure 4, where
we used N “ 128 modes and ϵ “ 5%. We notice that all errors are of the same magnitude as
the noise added to the original signal, exception made of ps. However, the computation time
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% noise N Direct Optim.

0

64 1.6407e-06 1.9636e-08
128 2.9192e-07 5.1596e-08
256 3.5804e-08 1.1931e-07
512 4.4756e-09 2.5856e-07

1
64 5.4159e+00 2.4425e-05
128 1.6627e+00 1.0315e-04
256 6.9348e-01 3.8279e-04

5
64 2.1112e+01 8.7488e-04
128 1.1758e+01 2.2192e-04
256 6.6573e+00 1.4831e-04

10
64 9.7216e+00 9.1691e-03
128 1.0309e+01 2.0514e-04
256 1.0938e+01 2.2797e-03

(a) |B ´ B˚|{|B˚|.

% noise N Direct Optim.

0

64 3.1851e-02 4.6998e-03
128 9.0898e-03 8.2738e-03
256 1.1527e-04 1.4128e-02
512 1.1342e-04 1.6856e-02

1
64 9.0614e+01 9.5117e-01
128 3.5142e+01 1.5885e+00
256 2.2646e+01 3.3760e+00

5
64 1.5840e+03 4.8191e+00
128 4.3467e+02 2.7363e+00
256 2.4527e+03 2.2819e+00

10
64 7.1252e+03 6.7018e+00
128 1.9906e+04 4.1020e+00
256 3.1396e+04 9.1385e+00

(b) }ps ´ p˚
s }8{}p˚

s }8.

% noise N Direct Optim.

0

64 1.8648e-02 5.8043e-04
128 5.4193e-03 1.3014e-03
256 1.0942e-05 2.0904e-03
512 7.7705e-06 2.8299e-03

1
64 2.7749e+00 1.5490e-01
128 2.6303e+00 1.2423e-01
256 2.5163e+00 8.4355e-02

5
64 3.9779e+00 1.0194e+00
128 3.7786e+00 3.1647e-01
256 6.4795e+00 1.3457e-01

10
64 5.3201e+00 3.0907e+00
128 8.6517e+00 5.4415e-01
256 9.7605e+00 3.5418e-01

(c) }η ´ η˚}8{}η˚}8.

% noise N Direct Optim.

0

64 3.6850e-04 3.8907e-02
128 3.0548e-03 1.2486e-01
256 1.2311e-02 8.9789e-01
512 5.7834e-02 4.9093e+00

1
64 2.1128e-03 3.6985e-01
128 1.1814e-03 1.7341e+00
256 3.9572e-03 4.2470e+00

5
64 1.0649e-01 4.8052e-01
128 1.1955e-01 2.0892e+00
256 1.2354e-02 7.3085e+00

10
64 7.1150e-03 6.1017e-01
128 2.6298e-02 2.5986e+00
256 2.7406e-01 1.3278e+01

(d) Computation time (in hours).

Table 1. Relative errors on the hydrodynamical variables and computation
time, with or without noise, at different values of N and for the direct and
optimisation recovery procedures.

needed to solve the inverse problem also grows significantly although it is not proportional to
the rate of noise added.

6. Discussion

We now discuss the results presented above and draw some conclusions from them. We
will mainly discuss two aspects: the effect of noise addition on the two methods, and the
comparison of the direct and optimisation methods from a technical perspective. Both topics
will be the occasion to hint some possible extensions and future research directions.

6.1. Comments on the noise addition. Implementing noise in our numerical experiments
provided some evidence that analytical continuation of the bottom pressure is a prerequisite
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(a)

(b)

(c)

Figure 4. (a): Pressure at the seabed. Ground truth value (computed from
(20)) is depicted in blue line. The signal with 5% added noise is represented
in dotted red line. (b,c): Recovered surface pressure and surface elevation
without (with) knowledge of the physics at the surface are represented in
dotted (dashed) red lines. The reference values are displayed with blue lines.
All computations were made with N “ 128.

for the direct method to work. Even in the case with only 1% of error, results in table 1 show
that it renders this method dramatically ineffective. In contrast, the optimisation procedure
shows a good agreement even in the presence of noise. For instance, the solution fields η and
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B have a relative error of the same magnitude as the noise added, which demonstrates the ro-
bustness of this method. Actually, this observation seems natural. The way we formulate the
inverse problem using an optimisation frame can be seen as a filtering for the bottom pressure,
since minimizing the L2 distance between pbpη, ps, Bq and p̌obsb corresponds to fitting pb to

some unbiased estimator of p̌obsb . However, the surface pressure ps still shows a non-negligible
deviation from the sought solution. As mentioned in the introduction, this can be attributed
to the ill-posedness of the problem, namely that any disturbances in the measurements prop-
agate exponentially to the surface. This is further explained by the nature of the dynamic
condition at the surface and the physical assumptions on ps. Indeed, capillary (or flexural)
waves involve high-order derivatives of the surface profile that are numerically problematic to
approximate when the solution is not smooth enough (as it is the case with unfiltered noise).
Numerical errors can thus accumulate since there are no constraint to enforce any regularity
on the surface pressure.

We see several ways to accommodate both methods to the case where noise is added.
Regarding the direct approach, we should focus on filtering the noise in the bottom mea-
surements before solving the analytical expressions. This method would require a precise
estimation technique to guarantee the analyticity of the signal, since our experiments show
that even the slightest addition of noise breaks the whole recovery process. As for the opti-
misation method, the main issue in the presence of noise solely concerns the surface pressure
ps. This can be solved by including more information to the problem, e.g. some additional
measurements or some knowledge of the physical mechanisms (the two being not exclusive).
In practice, this added information is simply incorporated in the optimisation problem by
adding an extra constraint. However, the latter could make the problem unsolvable or at
least numerically harder to solve. We illustrate this idea with a numerical experiment on
the same configuration than before where we added the constraint }ps ´ pths pηq}2L2pPq

“ 0 in

the optimisation problem (21) (pths being computed from the analytic expression (23)). The
results for N “ 128 and ϵ “ 5% are depicted in figure 4 with a dashed red curve when adding
this new constraint and in dotted red line without it. As clear from these panels, knowing
the physics at the surface removes the oscillations due to the noise and allows to recover
the solutions of reference with an excellent agreement. However, this configuration becomes
extremely challenging to solve when considering this additional constraint, as clear from the
computation time taken to solve this problem (which was t „ 5.1243 hours). Future research
should focus on the nature of information one can add to stabilise the solutions and lower the
complexity.

6.2. Comparison of the direct and optimisation approaches. The principal objective
of this work was to solve a nonlinear ill-posed inverse problem using two distinct approaches
and compare these methods from a numerical perspective. At first glance, we notice a clear
discrepancy in the computation time of both procedures. The direct approach is indeed much
faster than the optimisation method and we would like to understand the reasons behind this.
Let us return to the intrinsic nature of our direct formulation. By considering the analytic
extension of the bottom pressure, it allows for the derivation of some implicit formula for
the recovery of the surface profile. Solving these expressions with a root-finding algorithm
represents an efficient way of solving this inverse problem with a system of reduced size.
Therefore, the direct approach naturally exhibits one of the fastest way to compute these
variables with an excellent accuracy. On the other hand, the optimisation procedure (21)
requires to solve a series of unconstrained problem iteratively and adjust the parameters at



OPTIMAL RECONSTRUCTION OF WATER-WAVES FROM PRESSURE MEASUREMENTS 15

each iteration to respect the constraints. This method acts on a system with a larger size and
is strongly dependent on the number of constraints and optimisation variables. Indeed, we
observe in figure 2 (with data summarised in table 1 with 0% error) a tendency of the errors
on the recovered variables to grow as the size of the system increases, while the direct method
takes advantage of this increased number of variables. This is most probably due to the
complexity of the formulation (i.e. respecting all the constraints simultaneously) becoming too
arduous. Acceleration of the optimisation method should be an important topic of research in
order to make this approach really efficient and could be made using different techniques, such
as an increased parallelisation of the computation or via techniques of distributed optimisation
; see [4, 7] for more details on this topic.

Moreover, both methods are interesting in the sense that they can be generalised
fairly easily to more complex situations. Adding a linear shear current (as done in [14])
and considering overhanging profiles (as done in [22]) or flexural effects at the surface is
straightforward to implement in both approaches, although it would increase the complexity
of the expressions we used. Extending this work to the case of unsteady motions is a
challenging task that is still lacking from the literature. It would require in practice to
solve the inverse problem iteratively in time (repeating the current technique at each time
step) while avoiding numerical instabilities (e.g. aliasing) and following the same branch
of solution. In principle, both methods are applicable when considering this configuration
although the running time of the optimisation problem represents a clear impediment to
this formulation. Finally, extension towards the three-dimensional case is most certainly
the principal reason why we considered the optimisation approach in the first place. This
formulation is indeed well-designed to handle three-dimensional problems ; see [9, 20, 26]
for examples of optimisation problems involving 3D equations. However, it would require
to solve the equations of motion directly instead of considering the analytical expressions
we used in this work that were obtained from a boundary integral method. Since these
expressions are expressed in the complex plane, their generalisation in 3D is not trivial and
represents a current topic of research. For this reason, the direct approach is less inclined
to be extended to this configuration whereas the optimisation formulation could present a
solution to this long-standing problem.
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6. Å. Björck, Numerical methods for least squares problems, SIAM, 1996.



16 J. LABARBE, A. VIEIRA, AND D. CLAMOND

7. S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al., Distributed optimization and statistical learning
via the alternating direction method of multipliers, Foundations and Trends® in Machine learning 3 (2011),
no. 1, 1–122.

8. S. P. Boyd and L. Vandenberghe, Convex optimization, Cambridge university press, 2004.
9. V. J. Challis and J. K. Guest, Level set topology optimization of fluids in Stokes flow, International journal

for numerical methods in engineering 79 (2009), no. 10, 1284–1308.
10. D. Clamond, New exact relations for easy recovery of steady wave profiles from bottom pressure measure-

ments, J. Fluid Mech. 726 (2013), 547–558.
11. D. Clamond and A. Constantin, Recovery of steady periodic wave profiles from pressure measurements at

the bed, J. Fluid Mech. 714 (2013), 463–475.
12. D. Clamond and D. Henry, Extreme water wave profile recovery from pressure measurements at the seabed,

J. Fluid Mech. 903 (2020), R3.
13. D. Clamond and J. Labarbe, Steady water-waves with arbitrary surface-pressure: Their recovery from

bottom-pressure measurements, 2023.
14. D. Clamond, J. Labarbe, and D. Henry, Recovery of steady rotational wave profiles from pressure measure-

ments at the bed, J. Fluid Mech. 961 (2023), R2.
15. A. Constantin, W. Strauss, and E. Varvaruca, Global bifurcation of steady gravity water waves with critical

layers, Acta Mathematica 217 (2016), 195—-262.
16. A. Constantin and E. Varvaruca, Steady periodic water waves with constant vorticity: regularity and local

bifurcation, Arch. Rat. Mech. Anal. 199 (2011), 33–67.
17. C. Cossu, An introduction to optimal control: lecture notes from the flow-nordita summer school on ad-

vanced instability methods for complex flows, stockholm, sweden, 2013, Applied Mechanics Reviews 66
(2014), no. 2, 024801.

18. A. T. Da Silva and D. H. Peregrine, Steep, steady surface waves on water of finite depth with constant
vorticity, J. Fluid Mech. 195 (1988), 281–302.

19. T. Dbouk, A review about the engineering design of optimal heat transfer systems using topology optimiza-
tion, Applied Thermal Engineering 112 (2017), 841–854.

20. A. Gaymann, F. Montomoli, and M. Pietropaoli, Fluid topology optimization: Bio-inspired valves for
aircraft engines, International Journal of Heat and Fluid Flow 79 (2019), 108455.

21. D. Henry and G. P. Thomas, Prediction of the free-surface elevation for rotational water waves using the
recovery of pressure at the bed, Philos. Trans. R. Soc. A 376 (2018), 20170102.

22. J. Labarbe and D. Clamond, General procedure for free-surface recovery from bottom pressure measure-
ments: Application to rotational overhanging waves, J. Fluid Mech. 976 (2023), A20.

23. D.Y. Lee and H. Wang, Measurement of surface waves from subsurface gage, Coastal Engineering 1984
(1985), 271–286.

24. Ph. M. Morse and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, 1953.
25. K.L. Oliveras, V. Vasan, B. Deconinck, and D. Henderson, Recovering the water-wave profile from pressure

measurements, SIAM J. Appl. Math. 72 (2012), no. 3, 897–918.
26. C. H. Villanueva and K. Maute, CutFEM topology optimization of 3d laminar incompressible flow problems,

Computer Methods in Applied Mechanics and Engineering 320 (2017), 444–473.


	1. Introduction
	2. Problem statement
	3. Numerical procedure: direct approach
	3.1. Cauchy integral formula
	3.2. Expressions for computing steady surface waves and bottom pressure
	3.3. Holomorphic functions and recovery formula
	3.4. The Levenberg–Marquardt procedure

	4. Numerical procedure: optimisation approach
	4.1. An optimisation formulation
	4.2. The augmented Lagrangian approach

	5. Numerical experiments
	5.1. Recovery of capillary waves
	5.2. Addition of noise in the measurement

	6. Discussion
	6.1. Comments on the noise addition
	6.2. Comparison of the direct and optimisation approaches

	References

