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Abstract
For optimal control problems there is a classical discussion of whether one should
first optimize the problem and then discretize it, or the other way round. We are inter-
ested in exploring a similar question related to domain decomposition methods for
optimal control problems which have received substantial attention over the past two
decades, but newmethods were mostly developed using the optimize-then-decompose
approach. After a detailed introduction to this subject, we present and analyze a new
domain decomposition method for optimal control problems that comes from the
decompose-then-optimize strategy which is less common. We use as our model prob-
lem a linear quadratic optimal control problem which we decompose and then solve
using an augmented Lagrangian optimization technique. This leads to a new domain
decomposition algorithm for such problems that has very good scalability properties.
We prove that, when the algorithm converges, it necessarily converges to an optimal
point of the original, non-decomposed problem.We illustrate the efficiency of our new
domain decomposition method with numerical examples from which we obtain very
desirable properties for domain decomposition methods, namely that the convergence
is independent of the meshsize and the number of subdomain.

Keywords Domain decomposition · Optimal control · Augmented Lagrangian

B Pierre-Henri Cocquet
pierre-henri.cocquet@univ-pau.fr

Martin J. Gander
martin.gander@unige.ch

Alexandre Vieira
alexandre.vieira@inria.fr

1 Université de Pau et des Pays de l’Adour, E2S-UPPA, SIAME, Pau 64000, France

2 IRL CRM-CNRS - International Research Lab, Pau 64000, France

3 Université de Genève, Genève, Switzerland

4 Université Côte d’Azur, INRIA, LJAD, Nice 06100, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-025-02046-4&domain=pdf


Numerical Algorithms

1 Introduction

In optimal control and PDE constrained (equivalently constraint is commonly used)
optimization problems of the form

miny,u J (y, u) s.t. g(y, u) = 0, (1)

a subject of discussion is the question whether one should first optimize and then
discretize the problem, i.e. compute the Lagrangian first order optimality conditions

∇L(y, u, λ) = 0, (2)

and then discretize them (optimize-then-discretize or indirect method, path going from
the middle down and then to the left in Fig. 1), or if it is better to first discretize and
then optimize the problem (discretize-then-optimize or direct method, path going left
and then down in Fig. 1), see [51] for a presentation of these methods. There are
advantages to both approaches: for discretize-then-optimize, one always obtains the
true gradient of the discrete problem, even when the discretization is coarse, and
symmetric formulations remain symmetric. Also, for time dependent problems, due
to the Pontryagin maximum principle (see [26] for a historical introduction), the first
order optimality conditions are of the form of a Hamiltonian differential equation, and
if one discretizes first and then optimizes, this geometric structure can automatically
be preserved [14], see also [7, 29] and [30, Chapter VI, exercises 14,15,16]. This
is rather elegant, and can be important in low dimensions close to a critical value
of the Hamiltonian, but not in general since the first order optimality condition is a
boundary value problem and the time interval is not very large in general. In optimize-
then-discretize, none of the above properties hold, but discretizations are much more
flexible, one can adapt locally independently in the forward and backward problem
which can be an advantage, also in hyperbolic problems where CFL conditions need
to be met. In some cases, the two approaches also commute.

We are interested here in a new, analogous question for optimal control problems
and PDE constrained optimization when designing and analyzing parallel algorithms
for their solution using domain decomposition (DD), namely the decompose-then-
optimize and optimize-then-decompose approaches, see the right part of Fig. 1. The
situation here is more involved, and much less explored in the literature. Historically,

Fig. 1 Discretize then optimize versus optimize then discretize (left part) and decompose then optimize
versus optimize then decompose (right part)
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the FETI method [19] was developed in this spirit, albeit for unconstrained optimiza-
tion, and using the equivalence of the Laplace problem and the minimization of the
Dirichlet integral, see the blue arrows in Fig. 1: for FETI, one first considers the PDE
problem as an equivalent minimization problem (blue arrow going up), then decom-
poses the minimization problem at the variational level (red arrow going to the right
and blue arrow going down) which makes Neumann traces match automatically, and
thus only the Dirichlet traces need to be imposed to match explicitly for the DD solu-
tion to be a solution of the underlying PDE which is done in FETI using Lagrange
multipliers. FETI is also historically not written as an iteration, like the equivalent dual
Schur complement method at the discrete level, and the Conjugate Gradient method is
used to solve the decomposed system. Using however a stationary residual correction
method for the FETI system shows that it is a classical Dirichlet-Dirichlet method
(blue arrow going down), the dual of the Neumann-Neumann method [9] or primal
Schur complement method at the discrete level, see e.g. [15, Section 4.8].

The optimize-then-decompose approach (black arrow going down in themiddle and
then right green arrow in Fig. 1) has received quite some attention in the literature,
since one can directly apply standard DD methods to the optimality system (2), and
then study their convergence, which leads to interesting new results for DD methods,
see for example [21–23, 25], and also [45]. In contrast to the optimize-then-discretize
approach, in the optimize-then-decompose approach, it is also often shown that the
resulting DD iterations can be interpreted as solving optimal control problems on the
subdomains during the DD iteration, i.e. the green arrow going up on the right in
Fig. 1, see e.g. [16, 17, 21, 25, 27, 43, 44, 53]. DD methods can also be interpreted
as an optimization problem, see for example [18], where optimization techniques are
used to minimize the jumps in interface traces. This approach is also related to the
indirect shooting method, used for numerically solving optimal control problems of
ODEs where the optimality conditions are first derived, and then a parallel-in-time
method is applied to the derived system; see [31] for more details.

We focus here on the rather new decompose-then-optimize approach indicated by
the red arrows going right and down in Fig. 1. The idea here is to add some continuity
constraints in the feasible set associated to the decomposed PDEs. These constraints
must then be handled by different optimization techniques. This approach is related
to the direct shooting method for solving optimal control problems of ODEs where
the continuity of the solution in time also appears as constraints in the optimization
problem [31]. Due to the many optimization techniques, one can discover new DD
methods doing this, and even try to interpret their meaning as DDmethods for the first
order optimality system, as indicatedby the left going red arrow inFig. 1.Avery fruitful
source for such new methods is the augmented Lagrangian technique introduced by
Hestenes in [32], see also Powell [50]. In this approach one has, for (some of) the
constraints, a penalization function composed of a quadratic penalty term and a scalar
product involving a Lagrange multiplier. There is then a precise iterative algorithm on
how to update the Lagrange multiplier and the penalty parameter in order to converge
to an optimum, the augmented Lagrangian method.Without DD, this method has been
successfully applied to many PDE-constrained optimization problems over the past
decades, see [1, 3–5, 11–13, 33, 36–38], and the method is suitable for the analysis in
infinite dimensional spaces, see for instance [39–41].
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Our goal is to show how one can design and analyze new DD algorithms based on
the principle of decompose-and-optimize, and we follow Emile Picard’s recommen-
dation [49] to do so: “Les méthodes d’approximation dont nous faisons usage sont
théoriquement susceptibles de s’appliquer à toute équation, mais elles ne deviennent
vraiment intéressantes pour l’étude des propriétés des fonctions définies par les équa-
tions différentielles que si l’on ne reste pas dans les généralités et si l’on envisage
certaines classes d’équation.1” We will thus choose a specific PDE-constrained opti-
mization problem and use the augmented Lagrangian method to solve it to discover a
new domain decomposition method based on the decompose-then-optimize approach.

Our paper is organized as follows: in Section 2, we present the decompose-then-
optimize method based on the augmented Lagrangian algorithm for a linear quadratic
optimization problem. In Section 3 we study the convergence of the new DD method
for 2 subdomains, and explain how the results can be extended to more general decom-
positions ; we also use Fourier techniques to get more insight into the convergence
behavior. Afterwards, we show numerically the excellent scalability properties of our
algorithm in Section 4, and we draw some conclusions in Section 5.

Notation We denote by ∇q the gradient of a real-valued function. Assuming that we
have a Hilbert spaceH and a subspace X such that X ⊂ H ⊂ X ∗ is a Gelfand triple,
the directional derivative of a function F : x ∈ X �→ F(x) ∈ R is

∂x F(x)[δx] = lim
t→0

F(x + tδx) − F(x)

t
= 〈∂x F(x), δx〉X ∗,X ,

where ∂x F(x) is the gradient of F . The notation A � B means that there exists a
constant C which can depend only on the domain �, C = C(�), such that A ≤
C(�)B. For � ⊂ ∂�, we denote by Hs(�) the restriction to � of distributions in

Hs(∂�), and by H
1
2
00(�) the set of distributions defined on � such that their extension

with 0 on ∂� is in H
1
2 (∂�). We refer to [46] for more information about these trace

spaces.

2 A decompose-then-optimizemethod based on the augmented
Lagrangian algorithm

As indicated above, we use as ourmodel problem the linear quadratic PDE constrained
optimization problem2

min J̃ (y, u) := 1
2‖y − ytarget‖2L2(�)

+ α
2 ‖u‖2

L2(�)

s.t .

{
−�y = f + u on �,

y|∂� = 0,

(3)

1 The successive approximation methods we use can in theory be applied to any equation, but they only
become really interesting for the study of properties of functions defined by differential equations if one
does not remain in generalities, and considers certain classes of equations.
2 We use J̃ here to have J for the decomposed optimization problem.
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where � is a bounded open subset of Rd , d ≥ 1, with Lipschitz boundary, u ∈ L2(�)

is our control and f ∈ L2(�) is an imposed source term.
For FETI, an ad hoc augmented Lagrangian formulation penalizing the Dirichlet

jumps has already been proposed in [47] which led to Robin transmission conditions
when interpreted as a DD method, see also [2] for an augmented Lagrangian for-
mulation with inequality constraints for FETI. For the PDE constrained optimization
problem (3) however, we are only aware of [28, 35], where a quadratic penalization
approach was studied with the PDE constraint decomposed into subdomains, and the
trace jumps at the interfaces were then penalized in the augmented cost formulation.
In [42], the authors also use an augmented Lagrangian method but to penalize the
entire PDE, in addition to a decomposition technique, with no proof on convergence.

We decompose the domain of the PDE constraint in (3) into J non-overlapping
subdomains, � = ∪J

j=1� j , �i ∩ � j = ∅, and then add continuity constraints along
the interfaces �i j := ∂�i ∩ ∂� j = � j i for an example, see Fig. 2. We denote the
normal on�i j outward from�i into� j by ni j . The decomposed optimization problem
then reads

min
y,u,g

J (y, u, g) =
J∑

j=1

1

2
‖y j − ytarget‖2L2(� j )

+ α

2
‖u j‖2L2(� j )

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−�y j = f + u j in � j ,

y j = 0 on ∂� ∩ � j ,

∂n j i y j |� j i = g ji , g ji = −gi j on �i j �= ∅,

y j = yi on �i j �= ∅,

(u j , g j ) ∈ U .

(4)

The controls u = (u1, u2, . . . , uJ ) and the states y = (y1, y2, . . . , yJ ) are now split
into subdomain quantities, and U is the set of admissible controls which is defined
below.Note that we added additional unknowns function g := (g ji ) j i on the interfaces
which represent the normal derivative there that must match between the two subdo-
mains, and also equations, because the matching conditions ∂n j i y j |� j i = ∂n j i yi |� j i

are replaced in (4) by the two equations stating that each normal trace must equal g ji .
Hence, the new unknowns g ji , like the unknown solutions y j , must now appear in the
minimization problem formulation in the first line in (4) on the left.

The set of admissible controls U is defined as

U :=
{
(u j , g ji ) | u j ∈ L2(� j ), g ji ∈ H−1/2 (� j i

)
and g ji = −gi j

}
.

We can prove that the problems (3) and (4) have the same feasible sets and are
therefore equivalent. Note that we could also have added an unknown for the Dirichlet
traces instead, or even both Dirichlet and Neumann which would lead to further new
DD algorithms with the approach we describe below.
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Fig. 2 Example decomposition of � into four subdomains � j

We next define a reduced problem associated to (4) by eliminating the subdomain
solutions y j (like static condensation),

min
u,g

Ĵ (u, g) :=
J∑

j=1

1

2
‖y j (u j , g ji ) − ytarget‖2L2(� j )

+ α

2
‖u j‖2L2(� j )

s.t. y j |� j i − yi |� j i = 0, (u, g) ∈ U ,

(5)

where the statically condensed solutions y j (u j , g) satisfy

⎧⎪⎨
⎪⎩

−�y j = u j + f in � j ,

y j = 0 on ∂� ∩ ∂� j ,

∂n j i y j |� j i = g ji on each part of ∂� j \ ∂� = ∪i� j i .

(6)

Our new DD method is obtained when applying an augmented Lagrangian algo-
rithm to the reduced optimization problem (10). In the augmented Lagrangian
algorithm, one does not only add the Lagrange multiplier term to the cost functional
to form the Lagrangian, but in addition also penalizes (some of) the constraints in
the Lagrangian. The augmented Lagrangian algorithm is then given by an iteration,
in which at each iteration step an unconstrained optimization problem is solved for
fixed values of the Lagrange multipliers and penalization parameters, and based on
the result, these multipliers and parameters are updated, see [32]. In the context of (5),
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the continuity constraints y j |� j i − yi |� j i = 0 are those we penalize. The augmented
cost functional we use for the reduced optimization problem (5) is

Ĵ +(u, g; λ, ρ) = Ĵ (u, g) +∑(i, j)

∫
�i j

(yi (ui , g) − y j (u j , g))λi j
+∑(i, j)

ρi j
2 ‖yi (ui , g) − y j (u j , g)‖2L2(�i j )

,
(7)

where the sum is taken so that each interior interface is considered only once (there
is a slight abuse of notation in (7) since, if λi j ∈ H−1/2

(
� j i
)
, the integral

∫
�i j

must
be understood as a duality bracket). The augmented Lagrangian algorithm then solves
approximately at each iteration for given values λ = λk and ρ = ρk the reduced
minimization problem

min Ĵ +(u, g; λk, ρk) s.t. (u, g) ∈ U . (8)

This iteration defines our new DD method for the optimal control problem (3)
decomposed into subdomains as in (5). This approach is summarized in Algorithm
2.1. It should be noted that a closely related approach can be found in [8], but the
authors treat the variables g ji as implicit Lagrange multipliers for the continuity of
the adjoint state over the interface� (see [8, Remark 3.4.3]) and there is no convergence
proof to the optimal solution.

Algorithm 2.1 New DD Algorithm based on Augmented Lagrangian.

Data: Set initial tolerances {η0i j , ω0
i j }i j ⊂ (0, 1)2, choose τ > 1, and set k = 1.

Choose an initial guess u0, g0, and initial parameters {λ0i j }i j ⊂ V∗∩, {ρ0i j }i j ⊂ (1, ∞).

Compute y0(u0, g0) on each subdomain.
while

∑{
i j, �i j �=∅} ‖yk−1

i − yk−1
j ‖2

L2(�)
≥ maxi j ηki j do

Solve approximately (8) for uk , gk s.t. ‖∂u,gĴ+(uk , gk )‖U∗ ≤ maxi j ωk
i j ;

for i, j such that �i j �= ∅ do
if ‖yki − ykj ‖L2(�) ≤ ηki j then

λk+1
i j = λki j + ρki j (y

k
i − ykj ) ; // update multiplier

ρk+1
i j = ρki j ; // keep penalization

ωk+1
i j = (ρki j )

−1ωk
i j ; // decrease tolerances

ηk+1
i j = (ρki j )

−1/2ωk
i j ;

else
λk+1
i j = λki j ; // keep multiplier

ρk+1
i j = τρki j ; // increase penalization

ωk+1
i j = (ρk+1

i j )−1; // update tolerances

ηk+1
i j = (ρk+1

i j )−1/2;

end
end
k ← k + 1

end
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Remark 1 We have chosen to use an Augmented Lagrangian algorithm due to its prop-
erty to limit the cases when the Hessian becomes ill-conditioned. Without the linear
term

∫
�i j

(yi (ui , g) − yi (ui , g))λi j , the algorithm becomes a quadratic penalization
technique which forces the quadratic factors ρi j to grow to infinity in order to ensure
continuity. In this case, the Hessian will become ill-conditioned. However, with the
addition of the linear term described above, we do not necessarily need to have ρ

growing to infinity, see the proof of Proposition 1 below.

3 Convergence analysis

In this section, we will analyze the convergence of Algorithm 2.1 toward the solution
of (3). We will only treat the two subdomains case in detail, and comment on how
these results can be extended to decomposition with more subdomains at the end of
the current section.
Suppose we have two non-overlapping subdomains �1, �2 such that � = �1 ∪ �2,
�1 ∩ �2 = ∅ and ∂� ∩ ∂� j �= ∅. We also need the functional spaces

V∩ := H
1
2
00(�), U := L2(�1) × L2(�2) × H− 1

2 (�), (9)

where �∩ = ∂�1 ∩ ∂�2 is the interface. The problem (5) with two subdomains then
becomes

min
u,g

Ĵ (u, g) :=
2∑

i=1

1

2
‖yi (ui , g) − ytarget‖2L2(�i )

+ α

2
‖ui‖2L2(�i )

s.t. y1|�∩ − y2|�∩ = 0, (u1, u2, g) ∈ U ,

(10)

where the statically condensed solutions yi (ui , g) satisfy⎧⎪⎨
⎪⎩

−�yi = ui + f in �i ,

yi |∂�∩∂�i = 0,

∂nyi |�∩ = (−1)i+1g, i = 1, 2.

(11)

The augmented Lagrangian associated to the reduced optimization problem (10) is
defined as

min
u,g

Ĵ+(u, g; λ, ρ) = Ĵ (u, g)

+
∫
�
(y1(u1, g) − y2(u2, g))λ + ρ

2
‖y1(u1, g) − y2(u2, g)‖2L2(�)

. (12)

The gradient of Ĵ + with respect to u and g can be computed by introducing the
Lagrangian associated to (10) and is given by

∂u,gĴ +(u, g; λk, ρk) =
⎛
⎝ αu1 − p̃1

αu2 − p̃2
p̃2|� − p̃1|�

⎞
⎠ ,
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where p̃i are the adjoint variables that satisfy⎧⎪⎪⎨
⎪⎪⎩

−� p̃i + yi = ytarget,

p̃i |∂� = 0,

∂ni p̃i = (−1)i
(
λk + ρk(y1 − y2)

)
on �.

(13)

Note also that in this two subdomain case, ηki j = ηk and ωk
i j = ωk .

3.1 Existence of a unique solution

Before studying the convergence of Algorithm 2.1, we first prove that (12) admits a
minimizer and that, as ρ → +∞, the solution of the decoupled PDE constraint (11)
at the optimum (u, g) of (12) indeed satisfies the continuity at the interface. Note that
theorem 1 remains true for a number J > 2 of subdomains.

Theorem 1 For anyλk ∈ V∗∩ andρ > 0, the optimization problem (12)admits a unique
solution (u, g). If the associated (y1, y2) satisfy (11), then, for any λk ∈ L2(�), we
have

‖y1 − y2‖2L2(�)
� 1

ρ
+ 1

ρ2

∥∥∥λk∥∥∥2
L2(�)

, (14)

where the non explicitly mentioned constants do neither depend on k nor on ρ.

Proof First note that the admissible set U is convex, and the map (ui , g) �→ yi (ui , g)
is affine in ui , linear in g and injective . Therefore, we only need to prove the strict
convexity of the associated function in the variables (y, u),

J (y, u) := 1

2

2∑
i=1

[
‖yi − ytarget‖2L2(�i )

+ α‖ui‖2L2(�i )

]
+
∫

�

(y1 − y2)λ
k + ρk

2
‖y1 − y2‖2L2(�)

.

J is twice differentiable, and itsHessianmatrix is clearly positive definite. This proves
that J is strictly convex and [34, Theorem 1.46] then gives existence and uniqueness
of the solution.

Let (u, g) be the unique solution to (12). We then have

J (y(u, g), u) ≤ J (y(u, g), u), for all admissible u, g. (15)

For any fixed u ∈ L2(�), let y� ∈ H1
0 (�) be the unique solution to −�y� = u

and g� such that the restrictions y�,i := y�|�i satisfy ∂ni yi |�∩ = (−1)i+1g�. Since
y� ∈ H1(�), we have y�,1 = y�,2 on �∩, and (15) then yields∫

�

(y1 − y2)λ
k + ρ

2
‖y1 − y2‖2L2(�)

≤ J (y�(u, g�), u)

= 1

2

[
‖y� − ytarget‖2L2(�)

+ α‖ f ‖2L2(�)

]
=: C .
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Young’s inequality together with the Cauchy-Schwarz inequality then gives

2

∣∣∣∣
∫

�

(y1 − y2)λ
k
∣∣∣∣ ≤ 2

∥∥∥λk∥∥∥
L2(�∩)

‖y1 − y2‖L2(�∩) ≤ 2

ρ

∥∥∥λk∥∥∥2
L2(�∩)

+ ρ

2
‖y1 − y2‖2L2(�∩)

.

Combining the previous inequalities, we get

ρ‖y1−y2‖2L2(�)
≤2C−2

∫
�

(y1−y2)λ
k ≤ 2C+ 2

ρ

∥∥∥λk∥∥∥2
L2(�∩)

+ ρ

2
‖y1−y2‖2L2(�∩)

,

from which we finally infer the estimate (14). ��

3.2 Convergence of the augmented Lagrangian

We now prove convergence of our new domain decomposition Algorithm 2.1. For ease
of presentation, we denote by x := (u1, u2, g). As in [40] (see also references therein),
we rely on a so-called asymptotic KKT (AKKT) conditions (see e.g. [40, Definition
5.2]). We will prove that Algorithm 2.1 implies that the generated sequence complies
with this AKKT condition and that this yields convergence to the optimal solution of
(10). As exposed in [40], this approach is common for analyzing the convergence of
algorithms based on the augmented Lagrangian.

Before introducing AKKT conditions, we first give the (standard) KKT conditions
for (10). We introduce the Lagrangian associated to (10) which reads

L(x, λ) = Ĵ (x) + 〈λ, co(x)〉V∗∩,V∩ , (16)

where co : x = (u1, u2, g) ∈ U �→ y1(u1, g)|� − y2(u2, g)|� ∈ V∩ is the linear map
giving the continuity constraint and yi satisfies (11). We recall that some x ∈ U is a
KKT point of (10) if

∃λ ∈ V∗∩ such that ∂xL(x, λ) = 0 and co(x) = 0. (17)

To compute the derivative of L with respect to x , we introduce the linear operator
M(x) : V∗∩ → U∗ such that M(x)∗ = ∂xco(x). Since yi are affine functions of x , the
linear map ∂x co(x) does not depend on x and we use the notation M := M(x). The
differential of L with respect to x can then be written as

∂xL(x, λ)[δx] = ∂x Ĵ (x)[δx] + 〈λ, M∗δx
〉
V∗∩,V∩ = 〈∂x Ĵ (x) + Mλ, δx

〉
U∗,U .

We can then recast (17) so that x ∈ U is a KKT point for (10) if

∃λ ∈ V∗∩ such that ∂x Ĵ (x) + Mλ = 0 and co(x) = 0. (18)

It is usual to ask for M∗ to be surjective ; this condition is called constraint qual-
ification. As shown in the Appendix, for a two subdomain decomposition, one has
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Theorem 2 The map M∗ : U → V∩ is surjective and linear.

This constraint qualification will now serve to analyze the convergence of iterates
(xk, λk) which we suppose to be AKKT points, defined as follows:

Definition 1 We say that a feasible3 point x ∈ U respects the AKKT condition, if
there are sequences xk → x in U and (λk) ⊂ V∗∩ such that

∂xL(xk, λk) = ∂x Ĵ (xk) + Mλk⇀0 as k → +∞ in U∗. (19)

This convergence property implies boundedness of the sequence of multipliers:

Lemma 3 Suppose (19) is verified at some point x∗ (not necessarily feasible), and let
(xk, λk) be the associated sequence. Then (λk) is bounded.

Proof First, note that x ∈ U �→ ∂x Ĵ (x) ∈ U∗ and λ ∈ V∗∩ �→ Mλ ∈ U∗ are strongly
continuous. Due to theorem 2 and [10, Théorème II.2.20], we have the estimate

∀λ ∈ V∗∩, ‖λ‖V∗∩ � ‖Mλ‖U∗ . (20)

Therefore, for any n ∈ N, we get

‖λn − λ0‖V∗∩ � ‖Mλn − Mλ0‖U∗

� ‖∂x Ĵ (xn) + Mλn‖U∗ + ‖∂x Ĵ (x0) + Mλ0‖U∗ + ‖∂x Ĵ (xn) − ∂x Ĵ (x0)‖U∗

≤ C .

��
We now prove that Algorithm 2.1 produces a sequence (xk, λk)k which is an AKKT

point.

Proposition 1 Let (xk, λk, ρk) be the sequence generated by Algorithm 2.1, and sup-
pose that xk → x∗ in U . Then x∗ is an AKKT point.

Proof To prove that x∗ is an AKKT point, we start by noting that the cost function
Ĵ +(x; λ, ρ) defined in (12) can be written as

Ĵ +(x; λ, ρ) = Ĵ (x) + 〈λ, co(x)〉V∗∩,V∩ + ρ

2
‖co(x)‖2L2(�)

,

and thus ∂x Ĵ +(x; λ, ρ) = ∂x Ĵ (x) + M (λ + ρco(x)) . Therefore, in Algorithm 2.1,
xk+1 complies with

‖∂x Ĵ +(xk+1; λk, ρk)‖U∗ = ‖∂x Ĵ (xk+1) + Mλk+1‖U∗ ≤ ωk . (21)

As proved in [48, Lemma 3.1.1], limωk = lim ηk = 0. As a result, x∗ verifies (19)
and it remains to prove that x∗ is a feasible point.

To prove that co(xk) → 0, we consider two cases: (ρk) bounded and ρk → +∞.

3 A point x is called feasible if co(x) = 0.
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Case 1: Suppose (ρk) is bounded. Due to how (ρk) is updated, this implies that there
exists k0 ∈ N such that, for all k ≥ k0, ρk = ρk0 . Therefore, for all k ≥
k0, we have ‖y1(xk) − y2(xk)‖L2(�) ≤ ηk . Since ηk → 0, this implies
y1(xk) − y2(xk) → 0 in L2(�).

Case 2: Let us now suppose ρk → +∞. We recall that λk+1 = λk + ρk(yk1 − yk2 ).
Condition (21) can then be recast as∥∥∥(∂x Ĵ (xk+1) + Mλk

)
+ ρkM

(
y1(x

k) − y2(x
k)
)∥∥∥U∗ ≤ ωk .

Therefore, multiplying by (ρk)−1, we obtain∥∥∥M (y1(xk) − y2(x
k)
)∥∥∥U∗ ≤ ωk(ρk)−1 + (ρk)−1

∥∥∥∂x Ĵ (xk+1) + Mλk
∥∥∥U∗ .

Since (∂x Ĵ (xk)) and (λk) are bounded, we find M
(
y1(xk) − y2(xk)

) → 0.
Using now (20), one finds y1(xk) − y2(xk) → 0 in V∗∩.

Since the map x �→ co(x) is continuous and we assumed that xk → x∗, we have
co(xk) → co(x∗) in V∩. For both cases considered above, we end up having co(xk) =
y1(xk) − y2(xk) → 0 in L2(�) (Case 1) or in V∗∩ (Case 2). We recall that we have
V∩ ⊂ L2(�) ⊂ V∗∩ with continuous embedding and since co(xk) converges to 0 in
either L2(�) or V∗∩, the uniqueness of the limit in these spaces ensure that co(x∗) = 0.

��
We now prove that x∗ is the optimal solution of (10).

Proposition 2 Let (xk, λk) be the sequence generated by Algorithm 2.1. Suppose that
xk → x∗ in U , then x∗ is the optimal solution of (10) with associated multiplier λ∗
which is the weak-limit of (λk).

Proof Proposition 1 gives that x∗ is an AKKT point. Since V∗∩ is reflexive, its unit ball
is weakly compact. Therefore, lemma 3 implies that there exists λ∗ such that λn⇀λ∗
in V∗∩. Therefore, taking the limit in (19), and since x∗ is feasible, (x∗, λ∗) is such that

∂xL(x∗, λ∗) = ∂x Ĵ (x∗) + Mλ∗ = 0, co(x
∗) = 0,

which is exactly the KKT condition (18). Since the optimization problems (10) and
the initial one (3) are equivalent, we obtain that λ∗ is given by (24) and that x∗ is the
optimal solution of (10) which is unique since the latter is convex. ��
Remark 2 The multiplier λ∗, associated to the continuity constraint of the original
optimization problem (10), is also directly linked to the continuity constraint of the
adjoint variable.
The first order necessary conditions of optimality for (10) are given by

{
αui − pi = 0 in �i ,

p2|� − p1|� = 0,
, i = 1, 2,

⎧⎪⎨
⎪⎩

−�pi + yi = ytarget,

pi |∂� = 0,

∂ni pi = (−1)i+1λ∗ on �,

(22)
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where pi are adjoint variables and yi = yi (ui , g) are solutions to (11) that also comply
with y1(u1, g)|� − y2(u2, g)|� = 0.

Introducing now y, p ∈ H1
0 (�) and u ∈ L2(�) such that

y|�i = yi , p|�i = pi , u|�i = ui ,

we get that (y, p, u) satisfy{−�y = f + u in �

y ∈ H1
0 (�),

,

{−�p = −(y − ytarget) in �,

p ∈ H1
0 (�),

, αu − p = 0 in �. (23)

We emphasize that (23) are exactly the first order conditions of optimality of the
undecomposed optimization problem (3). We thus obtain that

λ∗ = (−1)i+1∂ni p|� (24)

where p satisfies the coupled system (23).

Remark 3 (Extension tomore than 2 subdomains)The extension of the convergence
results tomore subdomainsmainly consists in proving that theorem2 holdswhenmore
subdomains are involved. As shown in the appendix, the proof consists in proving that
M is injective (which can be easily adapted to a more complex decomposition) and
with closed range. This second part seems more challenging for several subdomains
and depends on how the decomposition is made. For example, the proof of lemma 4
can be straightforwardly adapted to stripwise decomposition like those used in the
numerical experiments from Section 4, mainly because we do not have subdomains
with Neumann boundary conditions only. Furthermore, as long as one supposes M∗
surjective, all the results leading to proposition 2 can be easily adapted to a context
with more subdomains. This extension to more subdomains can be seen more easily
when one carries a similar analysis we did in Section 3 once the problem (12) is
discretized ; see Appendix B.

3.3 Fourier analysis

To get more insight into the convergence behavior of our new DD Algorithm 2.1,
we study its rate of convergence in the case where the penalization parameter ρ is
kept constant during the iterations, and the domain is unbounded, � := R

2, with
(x1, x2) a system of coordinates on R

2, in order to use Fourier analysis, which can
give very detailed insight into the convergence of such algorithms, see e.g. [20, 24].
Let the subdomains �1 := (−∞, 0) × R, �2 := (0,+∞) × R, and the interface
� := {0} × R. In this setting, we can study how the iterations {λk} are converging.

The necessary and sufficient optimality conditions for (12) are

⎧⎪⎪⎨
⎪⎪⎩

−�yki = f + α−1 pki in �i ,

yki |∂� = 0,

∂ni y
k
i |�∩ = (−1)i+1gk , i = 1, 2

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−�pki + yki = ytarget,

pki |∂� = 0,

∂ni p
k
i = (−1)i

(
λk + ρ(yk1 − yk2 )

)
on �,

pk1 = pk2 on �.

(25)
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Since we are interested in the error in the new DD Algorithm 2.1, without loss
of generality, we will suppose that f ≡ 0 and ytarget ≡ 0, so that we can study
convergence to zero, i.e. the error equations.

We assume that λ0 has enough regularity so that its Fourier transform along the
vertical axis iswell-defined. Letω ∈ R be the Fourier variable and (ŷ, p̂) be the Fourier
transform in the x2 direction of (y, p) along the interface. The Fourier transformed
optimality conditions (25) then become

⎧⎪⎪⎨
⎪⎪⎩

(−∂2x1 + ω2)ŷki = α−1 p̂ki in �i ,

ŷki |∂� = 0,

∂x1 ŷ
k
i |�∩ = ĝk , i = 1, 2

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(−∂2x1 + ω2) p̂ki + ŷki = 0,

p̂ki |∂� = 0,

∂x1 p̂
k
i = −

(
λ̂k + ρ(ŷk1 − ŷk2 )

)
on �,

p̂k1 = p̂k2 on �.

(26)

In order to solve this system of ordinary differential equations, we compute ∂4x1 ŷ
k
i

and substitute,

∂4x1 ŷ
k
i =ω2∂2x1 ŷ

k
i − α−1∂2x1 p̂

k
i

=ω2∂2x1 ŷ
k
i − α−1(ω2 p̂ki + ŷki )

=ω2∂2x1 ŷ
k
i − α−1 ŷki − ω2(−∂2x1 ŷ

k
i + ω2 ŷki )

=2ω2∂2x1 ŷ
k
i − (ω4 + α−1)ŷki .

Using the boundary conditions at infinity, the solutions are thus of the form

ŷk1 =Ck
1 exp

(
x1

√
iα− 1

2 + ω2

)
+ Ck

3 exp

(
x1

√
−iα− 1

2 + ω2

)
,

ŷk2 =Ck
2 exp

(
−x1

√
iα− 1

2 + ω2

)
+ Ck

4 exp

(
−x1

√
−iα− 1

2 + ω2

)
,

where Ck
j are constants determined by the transmission conditions. This implies for

the adjoint variables

p̂k1 =iα
1
2

(
−Ck

1 exp

(
x1

√
iα− 1

2 + ω2

)
+ Ck

3 exp

(
x1

√
−iα− 1

2 + ω2

))
,

p̂k2 =iα
1
2

(
−Ck

2 exp

(
−x1

√
iα− 1

2 + ω2

)
+ Ck

4 exp

(
−x1

√
−iα− 1

2 + ω2

))
.

The transmission conditions at x1 = 0 then yield

∂x1 ŷ
k
1 |x1=0 = Ck

1

√
iα− 1

2 + ω2 + Ck
3

√
−iα− 1

2 + ω2 = ĝk,

∂x1 ŷ
k
2 |x1=0 = −Ck

2

√
iα− 1

2 + ω2 − Ck
4

√
−iα− 1

2 + ω2 = ĝk,
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∂x1 p̂
k
1|x1=0 = −iα

1
2

(
Ck
1

√
iα− 1

2 + ω2 − Ck
3

√
−iα− 1

2 + ω2

)
= −λ̂k+1,

∂x1 p̂
k
2|x1=0 = iα

1
2

(
Ck
2

√
iα− 1

2 + ω2 − Ck
4

√
−iα− 1

2 + ω2

)
= −λ̂k+1.

Denoting by A :=
√
iα− 1

2 + ω2 and B :=
√

−iα− 1
2 + ω2, we thus need to solve the

linear system ⎛
⎜⎜⎝
1 0 1 0
0 −1 0 −1
1 0 −1 0
0 1 0 −1

⎞
⎟⎟⎠
⎛
⎜⎜⎝
ACk

1
ACk

2
BCk

3
BCk

4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

ĝk

ĝk

iα− 1
2 λ̂k+1

−iα− 1
2 λ̂k+1

⎞
⎟⎟⎟⎠ .

The inverse of the system matrix being simply half its transpose, we get

ACk
1 = −ACk

2 = 1

2
(ĝk + iα− 1

2 λ̂k+1),

BCk
3 = −BCk

4 = 1

2
(ĝk − iα− 1

2 λ̂k+1).

Note in particular that Ck
3 = −Ck

4 and Ck
1 = −Ck

2 , and furthermore,

ŷk1 |x1=0 − ŷk2 |x1=0 = Ck
1 + Ck

3 − (Ck
2 + Ck

4 )

= 2(Ck
1 + Ck

3 )

= (A−1 + B−1)ĝk + (A−1 − B−1)iα− 1
2 λ̂k+1,

p̂k1|x1=0 − p̂k2|x1=0 = −iα
1
2 (Ck

1 − Ck
3 ) + iα

1
2 (Ck

2 − Ck
4 )

= −iα
1
2 (Ck

1 − Ck
3 − Ck

2 + Ck
4 )

= 2iα
1
2 (Ck

3 − Ck
1 )

= iα
1
2 (B−1 − A−1)ĝk + (A−1 + B−1)λ̂k+1.

Since p̂k1|x1=0 − p̂k2|x1=0 = 0, this implies ĝk = iα− 1
2

(A+B)
A−B λ̂k+1 from which we

infer
ŷk1 |x1=0 − ŷk2 |x1=0 = 4iα− 1

2 (A − B)−1λ̂k+1.

Denote by D := 4iα− 1
2 (A − B)−1. Since in our new DD algorithm λ̂k = λ̂k+1 −

ρ(ŷk1 |x1=0 − ŷk2 |x1=0), substituting the expression of ŷk1 |x1=0 − ŷk2 |x1=0 gives λ̂k =
(1 − ρD)λ̂k+1, and we thus obtain for the convergence factor

R := λ̂k+1

λ̂k
= (1 − ρD)−1 =

⎛
⎝1 − 4iρ

α1/2
(√

ω2 + iα−1/2 − √
ω2 − iα−1/2

)
⎞
⎠

−1

,

(27)
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where we substituted the expressions for D. Direct computations show that

lim
α→0

R = 0, R = iα1/2

4ρ

(√
ω2 + iα−1/2 −

√
ω2 − iα−1/2

)
+ O

(
1

ρ2

)
.

Note that, for all α ≥ 0 and any frequency ω, |R| is strictly smaller than 1 as soon as
ρ is large enough which indicates geometric convergence of the new DD algorithm.
We show a plot of |R| for chosen parameters in Fig. 3.

We see that convergence is rather fast, even for low frequenciesω, and themethod is
a smoother: high frequencies converge extremely fast. Such behavior is also confirmed
by our numerical results from Section 4 which show that the convergence of our
decompose-then-optimize method is robust with respect to meshsize along with the
number of subdomains. This Fourier analysis also indicates that these properties are
going to hold regardless the discretization used.

4 Numerical experiments

We now test our algorithm on two examples. We will mainly pay attention to how
the error evolves with the number of outer iterations and when the mesh is refined or
the number of domains increases. An outer iteration here should be understood as the
number of times one solves (8) and updates ρ or λ; see the while loop in Algorithm
2.1. We discretized the Laplacian using Q1 Finite Elements on a structured cartesian
mesh with step size h in both x1 and x2 directions. The minimization problems in each
iteration of our new DD algorithm are solved using the quadprog routine of MAT-
LAB which uses an interior-point algorithm, and we used τ = 5, ρ0

i j = 3, and λ0i j
is a random initial guess with values between 0 and 10. The options for quadprog
are the default ones, namely 1e-8 for the ConstraintTolerance, except the
OptimalityTolerance parameter which starts at 10−3 and is decreased with
the iteration of the augmented Largangian algorithm until it reaches 10−10. This
corresponds to a decrease of ωk

i j appearing in Algorithm 2.1 but with a threshold
placed on this decrease. All computationswere performed in double precision floating-

Fig. 3 |R| for ρ = 3, α = 1e − 5 (Left) and α = 1 (Right)
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Fig. 4 Badly insulated room example: heat sinks (top left), best floor heating found by our new DD
algorithm (top middle), temperature distribution achieved (top right). Bottom left: convergence of the new
DD algorithm for the control u for different mesh sizes (log scale for the ordinate axis); bottom right:
corresponding results for the solution y (log scale for the ordinate axis)

point arithmetic. Note that we use quadprog to solve the optimization problem (8)
globally, including all subdomains in a single optimization procedure. The matrices
defining the cost and the constraints are built by subdomain and combined in order
to define the whole optimization problem. The code used for the computations is
available online4.

4.1 Badly insulated room

Our first example is a badly insulated room, for which a floor heating should be
designed, and we study the convergence of our newDDmethod when only 5 iterations
are performed. The room geometry is� := (−1, 1)× (0, 1), with non-insulated walls
that are at temperature zero, modeled by homogeneous Dirichlet conditions, and we
want to see how a floor heating systemwould have to operate to heat it up to 20 degrees
hence ytarget(x1, x2) = 20. The room has in addition an openwindow at the bottom left
where cold air acts as a heat sink, and similarly a skylight on the right in the middle,
see Fig. 4 (top left). Wemodel this with f (x1, x2) = −3000e−50((x1−0.5)2+(x2−0.5)2)−
3000 × 1[−0.75,−0.25]×[0,0.25], where 1O is the indicator function of the set O.

We decompose the room into two subdomains �1 := (−1, 0) × (0, 1) and �2 :=
(0, 1)×(0, 1), and apply our newdomain decomposition algorithm in order to compute
the optimal floor heating. We show in Fig. 4

at the top the optimal control found for the floor heating by our new DD algorithm
(middle), and the achieved room temperature (right), when using as penalization α =
1e − 5. We see that such a badly insulated room is not at all suitable for floor heating
which needs to be evenly distributed; a more classical configuration with radiators

4 https://gitlab.osureunion.fr/avieira/liquofeti
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along the walls, and especially in front of the window would be much more suitable.
Floor heating systems are only good for well insulated buildings! In the bottom row,
we show the convergence of our new DD algorithm, on the left for the controls u j and
on the right for the solutions y j . The error here is the difference between the iterates
of our new DD algorithm and the solution computed on the whole domain directly,
measured in the infinity norm in volume. We see that convergence is very fast: the
error is reduced by 6 orders of magnitude in five iterations, and convergence is robust
in the mesh size h: when the mesh is refined, convergence gets actually a little faster
before approaching a limit.

We next increase the number of subdomains, using a decomposition into equal
vertical strips � j = (x j , x j+1) × (0, 1), x j = −1 + 2 j/J , j = 0, ..., J . Note that
sinceweare takingvertical strips, there is always a part of the upper and lower boundary
of the whole domain included in each subdomains, thus the optimal solution is never
trivial in each of these (see Fig. 4). We show in Fig. 5 the errors for J = 2, 4, 8, 16
subdomains and meshsize h = 1/64.

We see that convergence is still very fast and does not depend on the number of
subdomains.

4.2 Convergence behavior with respect to˛

We now test the convergence properties of our new DD algorithm as α varies. To do
this, we consider a model problem inspired by [27], namely

ytarget(x1, x2) :=C sin(lπx1) sin(lπx2),andf (x1, x2) :=2Cl2π2 sin(lπx1) sin(lπx2),

for different parameters C ∈ R, and l ∈ N. The optimal solution is u∗ = 0 and y∗ =
ytarget, for all admissible choices of parameters C, l, α. We solve this problem with
our new DD Algorithm 2.1 using a decomposition into equal vertical strips as in the
first physical example, and convergence parameters maxi j ωk

i j = maxi j ηki j = 10−10,
meaning that we stop the Augmented Lagrangian iterations when for all meaningful i ,
‖yi − yi+1‖L2({xi }×(0,1)) ≤ 10−10 where {xi } × (0, 1) denotes each interface between

Fig. 5 Convergence of the new DD algorithm for the control u (left) and solution y (right) for different
numbers of subdomains for the badly insulated room example. Both figures are with log scale for the
ordinate axis
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Table 1 Errors on the optimal solution for the second example using different values of α and number of
subdomains

#subd. h α Err. on y Err. on u Err. on g Cost # it.

2 1/64 1.0e+01 1.03e-09 1.81e-12 4.02e-08 4.18e-21 6

1.0e+00 1.07e-09 1.87e-11 4.02e-08 4.49e-21 6

1.0e-02 5.78e-10 8.58e-10 4.02e-08 1.14e-21 6

1.0e-04 1.50e-09 4.69e-08 4.03e-08 2.06e-21 5

1.0e-06 5.30e-09 1.62e-06 4.14e-08 2.67e-21 4

1/256 1.0e+01 1.11e-09 1.97e-12 4.92e-11 4.91e-21 6

1.0e+00 1.12e-09 1.98e-11 4.93e-11 4.98e-21 6

1.0e-02 7.35e-10 1.09e-09 4.65e-11 1.83e-21 6

1.0e-04 1.43e-09 4.45e-08 7.58e-11 1.84e-21 5

1.0e-06 4.68e-09 1.48e-06 6.34e-10 2.64e-21 4

4 1/64 1.0e+01 2.64e-10 5.06e-13 4.01e-08 2.06e-22 6

1.0e+00 2.11e-10 3.85e-12 4.01e-08 1.45e-22 6

1.0e-02 2.46e-10 2.88e-10 4.01e-08 2.00e-22 6

1.0e-04 1.42e-09 4.17e-08 4.03e-08 4.59e-21 5

1.0e-06 6.33e-09 1.72e-06 4.22e-08 9.48e-21 4

1/256 1.0e+01 3.12e-10 6.09e-13 4.20e-11 3.07e-22 6

1.0e+00 3.59e-10 6.68e-12 4.24e-11 4.29e-22 6

1.0e-02 2.14e-10 2.50e-10 4.13e-11 1.97e-22 6

1.0e-04 1.53e-09 4.47e-08 7.43e-11 4.68e-21 5

1.0e-06 4.71e-09 1.49e-06 6.58e-10 7.82e-21 4

8 1/64 1.0e+01 1.66e-09 6.25e-12 4.02e-08 3.00e-20 6

1.0e+00 1.83e-09 6.10e-11 4.02e-08 3.36e-20 6

1.0e-02 7.39e-10 2.23e-09 4.02e-08 4.28e-21 6

1.0e-04 7.98e-10 2.36e-08 4.02e-08 1.01e-21 5

1.0e-06 6.35e-09 2.01e-06 4.22e-08 2.23e-20 4

1/256 1.0e+01 8.14e-10 3.05e-12 4.59e-11 7.94e-21 6

1.0e+00 1.31e-09 4.43e-11 4.96e-11 1.78e-20 6

1.0e-02 3.64e-10 1.18e-09 4.26e-11 1.31e-21 6

1.0e-04 1.01e-09 3.25e-08 4.28e-11 1.61e-21 5

1.0e-06 5.09e-09 1.65e-06 6.69e-10 2.01e-20 4

16 1/64 1.0e+01 1.41e-09 5.91e-12 4.02e-08 4.37e-20 7

1.0e+00 1.05e-09 4.70e-11 4.02e-08 2.57e-20 7

1.0e-02 2.11e-10 6.16e-10 4.01e-08 4.69e-22 7

1.0e-04 4.50e-10 2.40e-08 4.02e-08 5.22e-22 5

1.0e-06 5.56e-09 1.55e-06 4.14e-08 1.43e-20 4

1/256 1.0e+01 1.25e-09 5.35e-12 5.00e-11 3.53e-20 7

1.0e+00 1.54e-09 6.75e-11 5.30e-11 5.62e-20 7

1.0e-02 2.78e-10 1.17e-09 4.24e-11 1.70e-21 7

1.0e-04 5.00e-10 2.56e-08 4.21e-11 6.82e-22 5

1.0e-06 4.59e-09 1.37e-06 5.92e-10 1.26e-20 4

The parameters were fixed as l = 2, C = 1
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Fig. 6 Convergence of the new DD algorithm with different values of α on the second example

two vertical strips. This example illustrates the convergence with respect to the outer
iterations since the optimal solution is known, and also shows how the algorithm
behaves when α is changing.

Results for different values of α, h and the number of subdomains are shown in
Table 1 and Fig. 6. We see that our new DD algorithm remains robust and fast when
changing the parameter α, the stepsize h and the number of subdomains. The number
of outer iterations needed to achieve the prescribed precision is roughly constant in
all our tests. Note nevertheless that, for large α, the rate slightly changes with more
subdomains.

5 Conclusions

We introduced a new concept for designing domain decomposition methods to solve
optimal control problems: instead of following the optimize then decompose approach,
we followed the decompose then optimize approach. Using then an augmented
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Lagrangian algorithm for the decomposed problem (or any other optimization tech-
nique) leads to new types of domain decomposition methods for such problems. We
studied a particular example of such a new domain decomposition method, namely
when the Dirichlet trace jump is also added as a penalization term in the augmented
Lagrangian formulation.

Many other new domain decomposition methods can be obtained this way, for
example by also including in the penalization the Neumann jump, or the entire PDE
constraint. Our choice led to a domain decomposition method which is robust under
mesh refinement, which lets us believe that this approach for designing new domain
decomposition methods is a rather powerful one.

Based on the numerical results from Section 4, we give now an outlook on future
research directions we foresee. First, a comment on the parallelizability of our newDD
method is in order: in our prototype implementation, we solve (8) using a global solver
encompassing all domains, hence our implementation was not parallel. Nevertheless,
a well designed computation of the solution of (8) can become highly parallel. To
see this, consider the simple case with two subdomains �1 and �2 having a common
interface�. The necessary and sufficient conditions of optimality for (8) use the adjoint
functions pki defined by⎧⎪⎪⎨

⎪⎪⎩
−�pki + yki = ytarget,

pki |∂� = 0,

∂ni p
k
i = (−1)i

(
λk + ρk(yk1 − yk2 )

)
on �.

(28)

The derivative of Ĵ + w.r.t. gk is pk1|� − pk2|� and the derivative w.r.t. uki is u
k
i − α pki ,

i = 1, 2. Using a gradient descent method or a quasi-Newton method, problem (8)
can then be solved in parallel as follows:

1. Starting with some initial guess uk,li , gk,l at l = 0, we compute yk,li for i = 1, 2
in parallel solving (6).

2. The resulting yk,li are then used to compute pk,li , i = 1, 2 in parallel by solving
(28).

3. Using yk,li and pk,li , i = 1, 2, we can compute Ĵ + and its derivatives.
4. We now set l := l + 1, update uk,l and gk,l using the gradient, and repeat the

process by going back to step 1 until convergence.

In this gradient descent method the subdomains have to exchange interface data twice:
first in order to compute the gap y1|� − y2|� in Step 2, and then to compute the gap
p1|� − p2|� in Step 3. This thus corresponds to a typical domain decomposition solver
by subdomain iteration, where both yk,li and pk,li can be computed independently on

each subdomain. Note also that the gap pk,l1 |� − pk,l2 |� only needs to be reduced to
a threshold ωk as prescribed in Algorithm 2.1, and thus the adjoint function is not
necessarily continuous for the whole Algorithm 2.1 to converge. Thoroughly studying
and testing this approach is however beyond the scope of the present manuscript and
will be future work.

A naturally following second remark is that the new DD method is in fact an inner
outer iteration method: the outer iteration is an update of ρ or λ, and the inner iteration
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comes from solving (8) with a parallelizable iterative method as described above.
Our numerical results from Section 4 indicate that the number of outer iterations
needed to converge does not depend on the number of subdomains. This is because
(8) is an optimization problem defined on the entire domain, inducing global coupling
through the pi . Since we used quadprog in our prototype implementation to solve
(8) globally, we did not measure the number of inner iterations needed to solve this
optimization problem.We expect that these inner iterations increasewith the number of
subdomains as it is typically observed with one level DD algorithms [15]. An analysis
of the convergence of these inner iterations and the addition of a coarse space is thus
also a very important future research direction.

Finally, a major next step is to adapt these results to PDE-constrained optimization
problems with non-linear PDEs as constraints like e.g. topology optimization [52, 54].
This approach is close to the direct multiple shooting method used for the numerical
solution of optimal control problems of ODEs (see [31]), and the generalization of our
new approach to non-linear equations seems straightforward. However, the analysis
and the efficiency of this method applied to non-linear models is currently a wide open
question.

Appendix A: Surjectivity of operatorM∗

In this section, we will focus on proving that the derivative of the continuity constraint
given by co : (u1, u2, g) ∈ U �→ y1(u1, g)|� − y2(u2, g)|� ∈ V∩, where yi (ui , g)
solves (11), is surjective. This condition (called regularity condition or constraint
qualification) serves in order to prove that a minimizer of (10) respects the first order
conditions of optimality (or KKT conditions). We recall that we denote by M∗ the
derivative of co with respect to (u1, u2, g). We first derive an explicit expression for
M . To do this, we introduce the Lagrangian of (10),

L(y, u, g, p, λ) =
2∑

i=1

∫
�i

∇ yi · ∇ pi − (−1)i+1
∫

�

gpi −
∫

�i

( fi + ui )pi

+ 1

2

∫
�i

(yi − ytarget)
2 + α

2

∫
�i

u2i +
∫

�

(y1 − y2)λ.

where we set u := (u1, u2), y := (y1, y2) and p := (p1, p2). In order to derive an
explicit expression of M , we compute the derivative of L and obtain

∂u,gL(y(u, g), u, g, p, λ) =
⎛
⎝αu1 − p1

αu2 − p2
p1 − p2|�

⎞
⎠ = ∂u,gĴ (u, g) + Mλ,

where M : V∗∩ → U∗ is the adjoint of M∗. Using classical computations, we can also
prove that

∂u,gĴ (u, g) =
⎛
⎝ αu1 − p̄1

αu2 − p̄2
p̄2|� − p̄1|�

⎞
⎠ where

⎧⎪⎨
⎪⎩

−� p̄i + yi = ytarget,

p̄i |∂� = 0,

∂n p̄i = 0 on �.
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Therefore, we get

Mλ = ∂u,gL(y(u, g), u, g, p, λ) − ∂u,gĴ (u, g) =
⎛
⎝ q1

q2
q1|� − q2|�

⎞
⎠ ,

where qi = p̄i − pi ∈ H1(�i ) is the weak solution of

⎧⎪⎨
⎪⎩

−�qi = 0,

qi |∂� = 0,

∂nqi = (−1)i+1λ on �.

(29)

Note that M does not depend on the controls.

Lemma 4 The operator M : λ ∈ V∗∩ �→ Mλ ∈ U∗ is injective with closed range.

Proof Injectivity: Let λ be such that Mλ = 0. The associated qi are then harmonic
and verify the transmission condition (on �) q1|� − q2|� = 0 and ∂n1q1 + ∂n2q2 = 0.
As a result, qi = q|�i where q ∈ H1

0 (�) is harmonic. Therefore q = 0 and thus
λ = ∂n1q1 = 0.

Closed range: Let Mλn = (q1,n, q2,n, ϕn)
ᵀ be a sequence of images such that qi,n

converges toward some qi in L2(�i ) and ϕn converges toward some ϕ in H1/2
00 (�). To

show that M has closed range, we have to prove that there exists λ ∈ H1/2
00 (�)∗ such

that Mλ = (q1, q2, ϕ)ᵀ.
Step 1: Since qi,n is harmonic on �i , we have

∀ψi ∈ C∞
c (�i ) :

∫
�i

qi,n�ψi dx = 0.

Using the L2 convergence of qi,n toward qi , we obtain that qi satisfies

∀ψi ∈ C∞
c (�i ) :

∫
�i

qi�ψi dx = 0,

and Weyl’s Lemma (see e.g. [55, p. 78, Theorem 18.G]) ensures that qi ∈ C∞(�i )

and satisfies �qi = 0 pointwise in �i .
Step 2: Let us consider the spaces

Hi,� :=
{
�i ∈ H1(�i ) | ��i ∈ L2(�i ), �i |∂�i\� = 0

}
.

For any ϕ ∈ H1/2
00 (�), we denote by ϕ̃ its extension by zero to ∂�i . The latter is

in H1/2(∂�i ) and the surjectivity of the trace operator gives the existence of some
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E ϕ̃ ∈ H1(�i ) such that E ϕ̃|∂�i = ϕ̃ and ‖E ϕ̃‖H1(�i )
� ‖ϕ̃‖

H1/2
00 (∂�i )

. From the

Green’s formula, for all �i ∈ Hi,�,

〈
∂ni �i , ϕ

〉
H1/2
00 (�)∗×H1/2

00 (�)
=
∫

�i

∇�i · ∇E ϕ̃ dx +
∫

�i

��i E ϕ̃ dx,

and thus, we can prove, using the Cauchy-Schwarz inequality, that

∣∣∣〈∂ni �i , ϕ
〉
H1/2
00 (�)∗×H1/2

00 (�)

∣∣∣ � ‖ϕ‖
H1/2
00 (�)

(‖�i‖H1(�i )
+ ‖��i‖L2(�i )

)
.

As a result, taking the supremum over all ϕ such that ‖ϕ‖
H1/2
00 (�)

= 1, we prove that

the linear map
∂ni : �i ∈ Hi,� �→ ∂ni�i ∈ H1/2

00 (�)∗

is continuous. In addition, for any harmonic �i ∈ Hi,�, we have the bound∥∥∂ni �i
∥∥
H1/2
00 (�)∗ � ‖�i‖H1(�i )

� ‖∇�i‖L2(�i )
,

where we used the Poincaré inequality to get the last upper bound.
Step 3: Both qi,n satisfy the weak formulation

∀ψi ∈ Vi :
∫

�i

∇qi,n · ∇ψi dx = 〈∂ni qi,n, ψi
〉
H1/2
00 (�)∗×H1/2

00 (�)
,

where Vi := {ψi ∈ H1(�i ) | ψi |∂�i\� = 0
}
. Now taking ψi = qi,n , one gets

∑
i

∥∥∇qi,n
∥∥2
L2(�i )

= 〈∂ni q1,n, q1,n 〉H1/2
00 (�)∗×H1/2

00 (�)
+ 〈∂n2q2,n, q2,n 〉H1/2

00 (�)∗×H1/2
00 (�)

= 〈∂n1q1,n, q1,n − q2,n
〉
H1/2
00 (�)∗×H1/2

00 (�)

= 〈∂n1q1,n, ϕn
〉
H1/2
00 (�)∗×H1/2

00 (�)
,

where we used that ∂n1q1,n|� + ∂n2q2,n|� = 0 and that, due to the definition of M , we
have ϕn = q1,n − q2,n . Using now Step 2, we obtain that

∑
i

∥∥∇qi,n
∥∥2
L2(�i )

≤ ∥∥∂ni q1,n∥∥H1/2
00 (�)∗ ‖ϕn‖H1/2

00 (�)
�
∥∥∇q1,n

∥∥
L2(�1)

‖ϕn‖H1/2
00 (�)

.

Using finally Young’s inequality, we get

∑
i

∥∥∇qi,n
∥∥2
L2(�i )

� ‖ϕn‖2
H1/2
00 (�)

.

Since ϕn is assumed to converge toward ϕ, it is bounded and thus the sequences(
qi,n
)
n are also bounded (uniformly with respect to n) in H1(�i ). We can then extract
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subsequences that converge weakly in H1(�i ) toward qi . The trace operator being
compact, we obtain that qi |∂�i\� = 0 and ϕ = q1|� −q2|� . Since qi ∈ Vi is harmonic,
it also belongs to Hi,� and its normal derivative can be defined as an element of
H1/2
00 (�)∗.
Step 4: We now identify the limit of the sequence λn . Let η ∈ H1/2

00 (�), since its

extension by zero (denoted by η̃) over ∂�i is in H1/2(∂�i ), we have some Ei η̃ ∈ Vi
such that Ei η̃|∂�i = η̃ and ‖Ei η̃‖H1(�i )

� ‖η̃‖
H1/2
00 (�)

. Using that λn = (−1)i+1∂ni qi,n
and the weak formulation satisfied by qi,n , we have

〈λn, η〉
H1/2
00 (�)∗×H1/2

00 (�)
= 1

2

〈
∂n1q1,n, E1η̃|�

〉
H1/2
00 (�)∗×H1/2

00 (�)

−1

2

〈
∂n2q2,n, E2η̃|�

〉
H1/2
00 (�)∗×H1/2

00 (�)

= 1

2

∫
�1

∇q1,n · ∇E1η̃ dx − 1

2

∫
�2

∇q2,n · ∇E2η̃ dx .

Now passing to the limit (after extracting a subsequence), we obtain that

lim
n→+∞ 〈λn, η〉

H1/2
00 (�)∗×H1/2

00 (�)
= 1

2

∫
�1

∇q1 · ∇E1η̃ dx − 1

2

∫
�2

∇q2 · ∇E2η̃ dx

=
〈
1

2

(
∂n1q1 − ∂n2q2

)
, η

〉
H1/2
00 (�)∗×H1/2

00 (�)

.

We have then proved that (λn)n ⊂ H1/2
00 (�)∗ has a subsequence converging toward

λ = 1
2

(
∂n1q1 − ∂n2q2

)
. We emphasize that each qi is unique since it is defined as the

L2-limit of qi,n and then the limit of the subsequence of (λn) is also unique. Urysohn’s
subsequence principle finally proves that the whole sequence λn converges toward λ.
Since Mλ = (q1, q2, q1|� − q2|�)t = (q1, q2, ϕ)t this proves that the range of M is
closed. ��
Applying now [10, Théorème II.20], we obtain theorem 2.

Appendix B: Surjectivity of operatorM∗ when discretized with finite
element

Using a standardGalerkinmethod to discretize the continuous optimal control problem
(10) following the notations in [19], we can go left the black arrow in the middle of
Fig. 1 and obtain the discrete optimal control problem

min
2∑

i=1

1

2
( yi − ytargeti )

ᵀNi ( yi − ytargeti ) + α

2
uᵀ
i Niui

s.t.

{
Ki yi = Fi + Niui + (−1)i+1Bᵀ

i g, i = 1, 2,

B1 y1 − B2 y2 = 0,

(30)
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where yi ∈ R
nsi +nI is the vector of degrees of freedom of the finite element approxi-

mation of yi , nsi is the number of interior nodes in �i and nI the number of interface
nodes on �, and Bi is of the form Bi = [0i , Ii ], i = 1, 2, where 0i is an nI × nsi zero
matrix, and Ii is the nI ×nI identity matrix. Ki is the stiffness matrix and Ni the mass
matrix, that are both invertible.

Solving this discrete optimal control problem (30) with the same new DD algo-
rithm based on the augmented Lagrangian approach leads to the decoupled augmented
discrete Lagrangian

min
2∑

i=1

1

2
( yi (ui , g) − ytargeti )

ᵀNi ( yi (ui , g) − ytargeti ) + α

2
uᵀ
i Niui

+ (λk)ᵀ(B1 y1(u1, g) − B2 y2(u2, g)) + ρk

2
‖B1 y1(u1, g) − B2 y2(u2, g)‖22,

(31)
where yi (ui , g) satisfy

Ki yi = Fi + Niui + (−1)i+1Bᵀ
i g, i = 1, 2.

As in the continuous framework, the convergence of our new DD method
given by Algorithm 2.1 depends on the surjectivity of the derivative of M∗

h :
(u1, u2, g) �→ B1 y1(u1, g) − B2 y2(u2, g) where yi (ui , g) verify Ki yi = Fi +
Niui + (−1)i+1Bᵀ

i g, i = 1, 2 (see (20) and Appendix A for this property at the
continuous level).

Proposition 3 The derivative of M∗
h w.r.t. (u1, u2, g) is onto.

Proof Note first that

B1 y1(u1, g) − B2 y2(u2, g) = (
B1K

−1
1 N1 −B2K

−1
2 N2 B1K

−1
1 Bᵀ

1 − B2K
−1
2 Bᵀ

2

)⎛⎝ u1
u2
g

⎞
⎠

+B1K
−1
1 F1 − B2K

−1
2 F2.

Therefore, the derivative of M∗
h is simply given by

∂M∗
h = (B1K

−1
1 N1 −B2K

−1
2 N2 B1K

−1
1 Bᵀ

1 − B2K
−1
2 Bᵀ

2

)
.

In order to prove that ∂M∗
h is surjective, we will prove that (∂Mh) is injective. Let

λ ∈ R
nI . Suppose (∂Mh)λ = 0. This implies that

K−ᵀ
1 Bᵀ

1 N1λ = 0

−K−ᵀ
2 Bᵀ

2 N2λ = 0

(B1K
−ᵀ
1 Bᵀ

1 − B2K
−ᵀ
2 Bᵀ

2 )λ = 0

⇐⇒ Bᵀ
1 N1λ = 0

Bᵀ
2 N2λ = 0

⇐⇒ λ = 0.

��
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The proof of the convergence of our new discrete DD algorithm to the solutions
of (30) can then be done as in the Section 3, or can be found in [6]. Note also that in
this discrete context, the extension to a striped decomposition with more subdomains
becomes easier, since only the injectivity of M needs to be proved.
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