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Abstract. For optimal control problems there is a classical discussion of whether one should
first optimize the problem and then discretize it, or the other way round. We are interested in
exploring a similar question related to domain decomposition methods for optimal control problems
which have received substantial attention over the past two decades, but new methods were mostly
developed using the optimize-then-decompose approach. After a detailed introduction to this subject,
we present and analyze a new domain decomposition method for optimal control problems that comes
from the decompose-then-optimize strategy, which is less common. We use as our model problem a
linear quadratic optimal control problem, which we decompose and then solve using an augmented
Lagrangian optimization technique. This leads to a new domain decomposition algorithm for such
problems that has very good scalability properties. We prove that, when the algorithm converges,
it necessarily converges to an optimal point of the original, non-decomposed problem. We illustrate
the efficiency of our new domain decomposition method with numerical examples from which we
obtain very desirable properties for domain decomposition methods, namely that the convergence is
independent of the meshsize and the number of subdomain.
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1. Introduction. In optimal control and PDE constrained (equivalently con-
straint is commonly used) optimization problems of the form

(1.1) miny,u J (y, u) s.t. g(y, u) = 0,

a subject of discussion is the question of whether one should first optimize and then
discretize the problem, i.e. compute the Lagrangian first order optimality conditions

(1.2) ∇L(y, u, λ) = 0,

and then discretize them (optimize-then-discretize or indirect method, path going
from the middle down and then to the left in Figure 1.1), or if it is better to first
discretize and then optimize the problem (discretize-then-optimize or direct method,
path going left and then down in Figure 1.1), see e.g. [50]. There are advantages to
both approaches: for discretize-then-optimize, one always obtains the true gradient
of the discrete problem, even when the discretization is coarse, and symmetric formu-
lations remain symmetric. Also, for time dependent problems, due to the Pontryagin
maximum principle (see [23] for a historical introduction), the first order optimality
conditions are of the form of a Hamiltonian differential equation, and if one discretizes
first and then optimizes, this geometric structure can automatically be preserved [14],
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§Physique et Ingénierie Mathématique pour l’Énergie et l’Environnement (PIMENT), Université
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Fig. 1.1: Discretize then optimize versus optimize then discretize (left part) and de-
compose then optimize versus optimize then decompose (right part).

see also [29, 7] and [30, Chapter VI, exercises 14,15,16]. This is rather elegant, and
can be important in low dimensions close to a critical value of the Hamiltonian, but
not in general since the first order optimality condition is a boundary value problem
and the time interval is not very large in general. In optimize-then-discretize, none of
the above properties hold, but discretizations are much more flexible, one can adapt
locally independently in the forward and backward problem, which can be an advan-
tage, also in hyperbolic problems where CFL conditions need to be met. In some
cases, the two approaches also commute.

We are interested here in a new, analogous question for optimal control problems
and PDE constrained optimization when designing and analyzing parallel algorithms
for their solution using domain decomposition (DD), namely the decompose-then-
optimize and optimize-then-decompose approaches, see the right part of Figure 1.1.
The situation here is more involved, and much less explored in the literature. His-
torically, the FETI method [19] was developed in this spirit, albeit for unconstrained
optimization, and using the equivalence of the Laplace problem and the minimization
of the Dirichlet integral, see the blue arrows in Figure 1.1: for FETI, one first considers
the PDE problem as an equivalent minimization problem (blue arrow going up), then
decomposes the minimization problem at the variational level (red arrow going to the
right and blue arrow going down), which makes Neumann traces match automatically,
and thus only the Dirichlet traces need to be imposed to match explicitly for the DD
solution to be a solution of the underlying PDE which is done in FETI using Lagrange
multipliers. FETI is also historically not written as an iteration, like the equivalent
dual Schur complement method at the discrete level, and the Conjugate Gradient
method is used to solve the decomposed system. Using however a stationary residual
correction method for the FETI system shows that it is a classical Dirichlet-Dirichlet
method (blue arrow going down), the dual of the Neumann-Neumann method [9] or
primal Schur complement method at the discrete level, see e.g. [15, Section 4.8].

The optimize-then-decompose approach (black arrow going down in the middle
and then right green arrow in Figure 1.1) has received quite some attention in the
literature, since one can directly apply standard DD methods to the optimality system
(1.2), and then study their convergence, which leads to interesting new results for DD
methods, see for example [21, 22, 24, 25], and also [44]. In contrast to the optimize-
then-discretize approach, in the optimize-then-decompose approach, it is also often
shown that the resulting DD iterations can be interpreted as solving optimal control
problems on the subdomains during the DD iteration, i.e. the green arrow going up
on the right in Figure 1.1, see e.g. [42, 21, 22, 27, 17, 16, 43, 51]. DD methods can also
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be interpreted as an optimization problem, see for example [18], where optimization
techniques are used to minimize the jumps in interface traces.

We focus here on the rather new decompose-then-optimize approach indicated by
the red arrows going right and down in Figure 1.1. The idea here is to add some
continuity constraints in the feasible set associated to the decomposed PDEs. These
constraints must then be handled by different optimization techniques. Due to the
many optimization techniques, one can discover new DD methods doing this, and even
try to interpret their meaning as DD methods for the first order optimality system,
as indicated by the left going red arrow in Figure 1.1. A very fruitful source for
such new methods is the augmented Lagrangian technique introduced by Hestenes
in [31], see also Powell [49]. In this approach one has, for (some of) the constraints,
a penalization function composed of a quadratic penalty term and a scalar product
involving a Lagrange multiplier. There is then a precise iterative algorithm on how
to update the Lagrange multiplier and the penalty parameter in order to converge to
an optimum, the augmented Lagrangian method. Without DD, this method has been
successfully applied to many PDE-constrained optimization problems over the past
decades, see [1, 3, 4, 5, 11, 12, 13, 32, 35, 36, 37], and the method is suitable for the
analysis in infinite dimensional spaces, see for instance [38, 39, 40].

Our goal is to show how one can design and analyze new DD algorithms based
on the principle of decompose-and-optimize, and we follow Emile Picard’s recom-
mendation [48] to do so: ”Les méthodes d’approximation dont nous faisons usage
sont théoriquement susceptibles de s’appliquer à toute équation, mais elles ne devien-
nent vraiment intéressantes pour l’étude des propriétés des fonctions définies par les
équations différentielles que si l’on ne reste pas dans les généralités et si l’on envisage
certaines classes d’équation1.” We will thus choose a specific PDE-constrained opti-
mization problem and use the augmented Lagrangian method to solve it to discover a
new domain decomposition method based on the decompose-then-optimize approach.

Our paper is organized as follows: in Section 2, we present the decompose-then-
optimize method based on the augmented Lagrangian algorithm for a linear quadratic
optimization problem. In Section 3 we study the convergence of the new DD method
for 2 subdomains, and explain how the results can be extended to more general de-
compositions ; we also use Fourier techniques to get more insight into the convergence
behavior. Afterwards, we show numerically the excellent scalability properties of our
algorithm in Section 4, and we draw some conclusions in Section 5.

Notations. We denote by ∇q the gradient of a real-valued function. Assuming
that we have a Hilbert space H and a subspace X such that X ⊂ H ⊂ X ∗ is a Gelfand
triple, the directional derivative of a function F : x ∈ X 7→ F (x) ∈ R is

∂xF (x)[δx] = lim
t→0

F (x+ tδx)− F (x)
t

= ⟨∂xF (x), δx⟩X∗,X ,

where ∂xF (x) is the gradient of F . The notation A ≲ B means that there exists a
constant C which can depend only the domain Ω, C = C(Ω), such that A ≤ C(Ω)B.
For Γ∩ ⊂ ∂Ω, we denote by Hs(Γ∩) the restriction to Γ∩ of distributions in Hs(∂Ω),

and by H
1
2
00(Γ∩) the set of distributions defined on Γ∩ such that their extension with

0 on ∂Ω is in H
1
2 (∂Ω). We refer to [45] for more information about these trace spaces.

1The successive approximation methods we use can in theory be applied to any equation, but
they only become really interesting for the study of properties of functions defined by differential
equations if one does not remain in generalities, and considers certain classes of equations.
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2. A decompose-then-optimize method based on the augmented La-
grangian algorithm. As indicated above, we use as our model problem the linear
quadratic PDE constrained optimization problem2

(2.1)

min J̃ (y, u) := 1
2∥y − ytarget∥

2
L2(Ω) +

α
2 ∥u∥

2
L2(Ω)

s.t.

{
−∆y = f + u on Ω,

y|∂Ω = 0,

where Ω is a bounded open subset of Rd, d ≥ 1, with Lipschitz boundary, u ∈ L2(Ω)
is our control and f ∈ L2(Ω) is an imposed source term.

For FETI, an ad hoc augmented Lagrangian formulation penalizing the Dirichlet
jumps has already been proposed in [46], which led to Robin transmission conditions
when interpreted as a DD method, see also [2] for an augmented Lagrangian formu-
lation with inequality constraints for FETI. For the PDE constrained optimization
problem (2.1) however, we are only aware of [28, 34], where a quadratic penalization
approach was studied with the PDE constraint decomposed into subdomains, and the
trace jumps at the interfaces were then penalized in the augmented cost formulation.
In [41], the authors also use an augmented Lagrangian method but to penalize the
entire PDE, in addition to a decomposition technique, with no proof on convergence.

We decompose the domain of the PDE constraint in (2.1) into J non-overlapping
subdomains, Ω = ∪Jj=1Ωj , Ωi ∩Ωj = ∅, and then add continuity constraints along the
interfaces Γij := ∂Ωi∩∂Ωj = Γji. We denote the normal on Γij outward from Ωi into
Ωj by nij . The decomposed optimization problem then reads

(2.2)

min
y,u,g

J (y, u, g) =
J∑

j=1

1

2
∥yj − ytarget∥2L2(Ωj)

+
α

2
∥uj∥2L2(Ωj)

s.t.



−∆yj = f + uj in Ωj ,

yj = 0 on ∂Ω ∩ Ωj ,

∂njiyj |Γji = gji, gji = −gij on Γij ̸= ∅,
yj = yi on Γij ̸= ∅,

(uj , gj) ∈ U .

Ω1 Ω2

Ω3 Ω4

Fig. 2.1: Example de-
composition of Ω into
four subdomains Ωj .

The controls u = (u1, u2, . . . , uJ) and the states y =
(y1, y2, . . . , yJ) are now split into subdomain quantities,
and U is the set of admissible controls which is defined
below. Note that we added additional unknowns function
g := (gji)ji on the interfaces, which represent the normal
derivative there that must match between the two subdo-
mains, and also equations, because the matching conditions
∂njiyj |Γji = ∂njiyi|Γji are replaced in (2.2) by the two equa-
tions stating that each normal trace must equal gji. Hence
the new unknowns gji, like the unknown solutions yj , must
now appear in the minimization problem formulation in the
first line in (2.2) on the left.

The set of admissible controls U is defined as

U :=
{
(uj , gji) | uj ∈ L2(Ωj), gji ∈ H−1/2 (Γji) and gji = −gij

}
.

2We use J̃ here to have J for the decomposed optimization problem.
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We can prove that the problems (2.1) and (2.2) have the same feasible sets and are
therefore equivalent. Note that we could also have added an unknown for the Dirichlet
traces instead, or even both Dirichlet and Neumann, which would lead to further new
DD algorithms with the approach we describe below.

We next define a reduced problem associated to (2.2) by eliminating the subdo-
main solutions yj (like static condensation),

(2.3)
min
u,g
Ĵ (u, g) :=

J∑
j=1

1

2
∥yj(uj , gji)− ytarget∥2L2(Ωj)

+
α

2
∥uj∥2L2(Ωj)

s.t. yj |Γji − yi|Γji = 0, (u, g) ∈ U ,

where the statically condensed solutions yj(uj , g) satisfy

(2.4)


−∆yj = uj + f in Ωj ,

yj = 0 on ∂Ω ∩ ∂Ωj ,

∂nji
yj |Γji

= gji on each part of ∂Ωj \ ∂Ω = ∪iΓji.

Our new DD method is obtained when applying an augmented Lagrangian al-
gorithm to the reduced optimization problem (3.2). In the augmented Lagrangian
algorithm, one does not only add the Lagrange multiplier term to the cost functional
to form the Lagrangian, but in addition also penalizes (some of) the constraints in
the Lagrangian. The augmented Lagrangian algorithm is then given by an iteration,
in which at each iteration step an unconstrained optimization problem is solved for
fixed values of the Lagrange multipliers and penalization parameters, and based on
the result, these multipliers and parameters are updated, see [31]. In the context
of (2.3), the continuity constraints yj |Γji

− yi|Γji
= 0 are those we penalize. The

augmented cost functional we use for the reduced optimization problem (2.3) is

(2.5)
Ĵ +(u, g;λ, ρ) = Ĵ (u, g) +

∑
(i,j)

∫
Γij

(yi(ui, g)− yj(uj , g))λij
+
∑

(i,j)
ρij

2 ∥yi(ui, g)− yj(uj , g)∥
2
L2(Γij)

,

where the sum is taken so that each interior interface is considered only once (there is
a slight abuse of notation in (2.5) since, if λij ∈ H−1/2 (Γji), the integral

∫
Γij

must be

understood as a duality bracket). The augmented Lagrangian algorithm then solves
approximately at each iteration for given values λ = λk and ρ = ρk the reduced
minimization problem

(2.6) min Ĵ +(u, g;λk, ρk) s.t. (u, g) ∈ U .

This iteration defines our new DD method for the optimal control problem (2.1)
decomposed into subdomains as in (2.3). This approach is summarised in Algorithm
2.1. It should be noted that a closely related approach can be found in [8], but the
authors treat the variables gji as implicit Lagrange multipliers for the continuity of the
adjoint state over the interface Γ∩ (see [8, Remark 3.4.3]) and there is no convergence
proof to the optimal solution.

Remark 2.1. Note that in Algorithm 2.1, the solution of (2.6) is parallelizable:
for fixed uj and g, the PDE-constraint can be solved in parallel, meaning each yj(uj , g)
can be found on independant processors. The same holds for the solution of the adjoint
system (see Eq. (3.5) when 2-subdomains are considered). Also, during the update of
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Algorithm 2.1: New DD Algorithm based on Augmented Lagrangian

Data: Set initial tolerances {η0ij , ω0
ij}ij ⊂ (0, 1)2, choose τ > 1, and set

k = 0.
Choose an initial guess u0, g0, and initial parameters {λ0ij}ij ⊂ V∗

∩,

{ρ0ij}ij ⊂ (1,∞).

while
∑

{ij, Γij ̸=∅} ∥y
k−1
i − yk−1

j ∥2L2(Γ∩) ≥ maxij η
k
ij do

Solve approximately (2.6) for uk, gk s.t. ∥∂u,gĴ +(uk, gk)∥U∗ ≤ maxij ω
k
ij ;

for i, j such that Γij ̸= ∅ do
if ∥yki − ykj ∥2L2(Γ∩) ≤ η

k
ij then

λk+1
ij = λkij + ρkij(y

k
i − ykj ) ; // update multiplier

ρk+1
ij = ρkij ; // keep penalization

ωk+1
ij = (ρkij)

−1ωk
ij ; // decrease tolerances

ηk+1
ij = (ρkij)

−1/2ωk
ij ;

else

λk+1
ij = λkij ; // keep multiplier

ρk+1
ij = τρkij ; // increase penalization

ωk+1
ij = (ρk+1

ij )−1; // update tolerances

ηk+1
ij = (ρk+1

ij )−1/2;

end

end
k ← k + 1

end

the descent method used in order to solve (2.1), an update of the uj occurs and can be
done in parallel (since it is based on the value of the adjoint variable which is defined

only on the subdomain Ωj), and most of the computation of Ĵ + is decoupled on each
subdomain. The only synchronization barrier arises for the computation of the cost
on the virtual boundaries Γji and the update of the virtual controls gji, since one needs
to compute yj |Γji−yi|Γji and thus this implies a synchronized communication between
processors.

3. Convergence analysis. In this section, we will analyse the convergence of
Algorithm 2.1 toward the solution of (2.1). We will only treat the two subdomains
case in details, and comment on how these results can be extended to decomposition
with more subdomains at the end of the current section.
Suppose we have two non-overlapping subdomains Ω1, Ω2 such that Ω = Ω1 ∪ Ω2,
Ω1 ∩ Ω2 = ∅ and ∂Ω ∩ ∂Ωj ̸= ∅. We also need the functional spaces

(3.1) V∩ := H
1
2
00(Γ∩), U := L2(Ω1)× L2(Ω2)×H− 1

2 (Γ∩),

where Γ∩ = ∂Ω1 ∩∂Ω2 is the interface. The problem (2.3) with two subdomains then
becomes

(3.2)
min
u,g
Ĵ (u, g) :=

2∑
i=1

1

2
∥yi(ui, g)− ytarget∥2L2(Ωi)

+
α

2
∥ui∥2L2(Ωi)

s.t. y1|Γ∩ − y2|Γ∩ = 0, (u1, u2, g) ∈ U ,
6



where the statically condensed solutions yi(ui, g) satisfy

(3.3)


−∆yi = ui + f in Ωi,

yi|∂Ω∩∂Ωi = 0,

∂nyi|Γ∩ = (−1)i+1g, i = 1, 2.

The augmented Lagrangian associated to the reduced optimization problem (3.2) is
defined as

min
u,g
Ĵ +(u, g;λ, ρ) = Ĵ (u, g)

+

∫
Γ∩

(y1(u1, g)− y2(u2, g))λ+
ρ

2
∥y1(u1, g)− y2(u2, g)∥2L2(Γ∩).(3.4)

The gradient of Ĵ + with respect to u and g can be computed by introducing the
Lagrangian associated to (3.2) and is given by

∂u,gĴ +(u, g;λk, ρk) =

 αu1 − p̃1
αu2 − p̃2

p̃2|Γ∩ − p̃1|Γ∩

 ,

where p̃i are the adjoint variables that satisfy

(3.5)


−∆p̃i + yi = ytarget,

p̃i|∂Ω = 0,

∂ni
p̃i = (−1)i

(
λk + ρk(y1 − y2)

)
on Γ∩.

Note also that in this two subdomain case, ηkij = ηk and ωk
ij = ωk.

3.1. Existence of a unique solution. Before studying the convergence of Al-
gorithm 2.1, we first prove that (3.4) admits a minimizer and that, as ρ → +∞, the
solution of the decoupled PDE constraint (3.3) at the optimum (u, g) of (3.4) indeed
satisfies the continuity at the interface. Note that Theorem 3.1 remains true for a
number J > 2 of subdomains.

Theorem 3.1. For any λk ∈ V∗
∩ and ρ > 0, the optimization problem (3.4) admits

a unique solution (u, g). If the associated (y1, y2) satisfy (3.3), then, for any λk ∈
L2(Γ∩), we have

(3.6) ∥y1 − y2∥2L2(Γ∩) ≲
1

ρ
+

1

ρ2
∥∥λk∥∥2

L2(Γ∩)
,

where the non explicitly mentioned constants do neither depend on k nor on ρ.

Proof. First note that the admissible set U is convex, and the map (ui, g) 7→
yi(ui, g) is affine in ui, linear in g and injective. Therefore, we only need to prove the
strict convexity of the associated function in the variables (y, u),

J (y, u) := 1

2

2∑
i=1

[
∥yi − ytarget∥2L2(Ωi)

+ α∥ui∥2L2(Ωi)

]
+

∫
Γ∩

(y1−y2)λk+
ρk

2
∥y1−y2∥2L2(Γ∩).

J is twice differentiable, and its Hessian matrix is clearly positive definite. This proves
that J is strictly convex and [33, Theorem 1.46] then gives existence and uniqueness
of the solution.
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Let (u, g) be the unique solution to (3.4). We then have

(3.7) J (y(u, g), u) ≤ J (y(u, g), u), for all admissible u, g.

For any fixed u ∈ L2(Ω), let yΩ ∈ H1
0 (Ω) be the unique solution to −∆yΩ = u

and gΩ such that the restrictions yΩ,i := yΩ|Ωi satisfy ∂niyi|Γ∩ = (−1)i+1gΩ. Since
yΩ ∈ H1(Ω), we have yΩ,1 = yΩ,2 on Γ∩, and (3.7) then yields∫

Γ∩

(y1 − y2)λk +
ρ

2
∥y1 − y2∥2L2(Γ∩) ≤ J (yΩ(u, gΩ), u)

=
1

2

[
∥yΩ − ytarget∥2L2(Ω) + α∥f∥2L2(Ω)

]
=: C.

Young’s inequality together with the Cauchy-Schwarz inequality then gives

2

∣∣∣∣∫
Γ∩

(y1 − y2)λk
∣∣∣∣ ≤ 2

∥∥λk∥∥
L2(Γ∩)

∥y1 − y2∥L2(Γ∩) ≤
2

ρ

∥∥λk∥∥2
L2(Γ∩)

+
ρ

2
∥y1 − y2∥2L2(Γ∩) .

Combining the previous inequalities, we get

ρ∥y1 − y2∥2L2(Γ∩) ≤ 2C − 2

∫
Γ∩

(y1 − y2)λk ≤ 2C +
2

ρ

∥∥λk∥∥2
L2(Γ∩)

+
ρ

2
∥y1 − y2∥2L2(Γ∩) ,

from which we finally infer the estimate (3.6).

3.2. Convergence of the augmented Lagrangian. We now prove conver-
gence of our new domain decomposition Algorithm 2.1. For ease of presentation,
we denote by x := (u1, u2, g). As in [39] (see also references therein), we rely on
a so-called asymptotic KKT (AKKT) conditions (see e.g. [39, Definition 5.2]). We
will prove that Algorithm 2.1 implies that the generated sequence complies with this
AKKT condition and that this yields convergence to the optimal solution of (3.2). As
exposed in [39], this approach is common for analyzing the convergence of algorithms
based on the augmented Lagrangian.

Before introducing AKKT conditions, we first give the (standard) KKT conditions
for (3.2). We introduce the Lagrangian associated to (3.2) which reads

(3.8) L(x, λ) = Ĵ (x) + ⟨λ, co(x)⟩V∗
∩,V∩

,

where co : x = (u1, u2, g) ∈ U 7→ y1(u1, g)|Γ∩ − y2(u2, g)|Γ∩ ∈ V∩ is the linear map
giving the continuity constraint and yi satisfies (3.3). We recall that some x ∈ U is a
KKT point of (3.2) if

(3.9) ∃λ ∈ V∗
∩ such that ∂xL(x, λ) = 0 and co(x) = 0.

To compute the derivative of L with respect to x, we introduce the linear operator
M(x) : V∗

∩ → U∗ such that M(x)∗ = ∂xco(x). Since yi are affine functions of x, the
linear map ∂xco(x) does not depend on x and we use the notation M := M(x). The
differential of L with respect to x can then be written as

∂xL(x, λ)[δx] = ∂xĴ (x)[δx] + ⟨λ,M∗δx⟩V∗
∩,V∩

=
〈
∂xĴ (x) +Mλ, δx

〉
U∗,U

.

We can then recast (3.9) so that x ∈ U is a KKT point for (3.2) if

(3.10) ∃λ ∈ V∗
∩ such that ∂xĴ (x) +Mλ = 0 and co(x) = 0.

It is usual to ask for M∗ to be surjective ; this condition is called constraint qualifi-
cation. As shown in the Appendix, for a two subdomain decomposition, one has
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Theorem 3.2. The map M∗ : U → V∩ is surjective and linear.

This constraint qualification will now serve to analyse the convergence of iterates
(xk, λk), which we suppose to be AKKT points, defined as follows:

Definition 3.3. We say that a feasible3 point x ∈ U respects the AKKT condi-
tion, if there are sequences xk → x in U and (λk) ⊂ V∗

∩ such that

(3.11) ∂xL(xk, λk) = ∂xĴ (xk) +Mλk ⇀ 0 as k → +∞ in U∗.

This convergence property implies boundedness of the sequence of multipliers:

Lemma 3.4. Suppose (3.11) is verified at some point x∗ (not necessarily feasible),
and let (xk, λk) be the associated sequence. Then (λk) is bounded.

Proof. First, note that x ∈ U 7→ ∂xĴ (x) ∈ U∗ and λ ∈ V∗
∩ 7→ Mλ ∈ U∗ are

strongly continuous. Due to Theorem 3.2 and [10, Théorème II.2.20], we have the
estimate

(3.12) ∀λ ∈ V∗
∩, ∥λ∥V∗

∩ ≲ ∥Mλ∥U∗ .

Therefore, for any n ∈ N, we get

∥λn − λ0∥V∗
∩ ≲ ∥Mλn −Mλ0∥U∗

≲ ∥∂xĴ (xn) +Mλn∥U∗ + ∥∂xĴ (x0) +Mλ0∥U∗ + ∥∂xĴ (xn)− ∂xĴ (x0)∥U∗

≤ C.

We now prove that Algorithm 2.1 produces a sequence (xk, λk)k which is an
AKKT point.

Proposition 3.5. Let (xk, λk, ρk) be the sequence generated by Algorithm 2.1,
and suppose that xk → x∗ in U . Then x∗ is an AKKT point.

Proof. To prove that x∗ is an AKKT point, we start by noting that the cost
function Ĵ +(x;λ, ρ) defined in (3.4) can be written as

Ĵ +(x;λ, ρ) = Ĵ (x) + ⟨λ, co(x)⟩V∗
∩,V∩

+
ρ

2
∥co(x)∥2L2(Γ∩) ,

and thus ∂xĴ +(x;λ, ρ) = ∂xĴ (x)+M (λ+ ρco(x)) . Therefore, in Algorithm 2.1, xk+1

complies with

(3.13) ∥∂xĴ +(xk+1;λk, ρk)∥U∗ = ∥∂xĴ (xk+1) +Mλk+1∥U∗ ≤ ωk.

As proved in [47, Lemma 3.1.1], limωk = lim ηk = 0. As a result, x∗ verifies (3.11)
and it remains to prove that x∗ is a feasible point.

To prove that co(x
k)→ 0, we consider two cases: (ρk) bounded and ρk → +∞.

Case 1: Suppose (ρk) is bounded. Due to how (ρk) is updated, this implies that
there exists k0 ∈ N such that, for all k ≥ k0, ρ

k = ρk0 . Therefore, for all
k ≥ k0, we have ∥y1(xk) − y2(xk)∥L2(Γ∩) ≤ ηk. Since ηk → 0, this implies

y1(x
k)− y2(xk)→ 0 in L2(Γ∩).

3A point x is called feasible if co(x) = 0.
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Case 2: Let us now suppose ρk → +∞. We recall that λk+1 = λk + ρk(yk1 − yk2 ).
Condition (3.13) can then be recast as∥∥∥(∂xĴ (xk+1) +Mλk

)
+ ρkM

(
y1(x

k)− y2(xk)
)∥∥∥

U∗
≤ ωk.

Therefore, multiplying by (ρk)−1, we obtain∥∥M (
y1(x

k)− y2(xk)
)∥∥

U∗ ≤ ωk(ρk)−1 + (ρk)−1
∥∥∥∂xĴ (xk+1) +Mλk

∥∥∥
U∗
.

Since (∂xĴ (xk)) and (λk) are bounded, we find M
(
y1(x

k)− y2(xk)
)
→ 0.

Using now (3.12), one finds y1(x
k)− y2(xk)→ 0 in V∗

∩.
Since the map x 7→ co(x) is continuous and we assumed that xk → x∗, we have
co(x

k)→ co(x
∗) in V∩. For both cases considered above, we end up having co(x

k) =
y1(x

k) − y2(x
k) → 0 in L2(Γ∩) (Case 1) or in V∗

∩ (Case 2). We recall that we
have V∩ ⊂ L2(Γ∩) ⊂ V∗

∩ with continuous embedding and since co(x
k) converges to

0 in either L2(Γ∩) or V∗
∩, the uniqueness of the limit in these spaces ensure that

co(x
∗) = 0.

We now prove that x∗ is the optimal solution of (3.2).

Proposition 3.6. Let (xk, λk) be the sequence generated by Algorithm 2.1. Sup-
pose that xk → x∗ in U , then x∗ is the optimal solution of (3.2) with associated
multiplier λ∗ which is the weak-limit of (λk).

Proof. Proposition 3.5 gives that x∗ is an AKKT point. Since V∗
∩ is reflexive, its

unit ball is weakly compact. Therefore, Lemma 3.4 implies that there exists λ∗ such
that λn ⇀ λ∗ in V∗

∩. Therefore, taking the limit in (3.11), and since x∗ is feasible,
(x∗, λ∗) is such that

∂xL(x∗, λ∗) = ∂xĴ (x∗) +Mλ∗ = 0, co(x
∗) = 0,

which is exactly the KKT condition (3.10). Since the optimization problems (3.2)
and the initial one (2.1) are equivalent, we obtain that λ∗ is given by (3.16) and that
x∗ is the optimal solution of (3.2) which is unique since the latter is convex.

Remark 3.7. The multiplier λ∗, associated to the continuity constraint of the
original optimization problem (3.2), is also directly linked to the continuity constraint
of the adjoint variable.
The first order necessary conditions of optimality for (3.2) are given by

(3.14)

{
αui − pi = 0 in Ωi,

p2|Γ∩ − p1|Γ∩ = 0,
, i = 1, 2,


−∆pi + yi = ytarget,

pi|∂Ω = 0,

∂ni
pi = (−1)i+1λ∗ on Γ∩,

where pi are adjoint variables and yi = yi(ui, g) are solution to (3.3) that also comply
with y1(u1, g)|Γ∩ − y2(u2, g)|Γ∩ = 0.

Introducing now y, p ∈ H1
0 (Ω) and u ∈ L2(Ω) such that

y|Ωi = yi, p|Ωi = pi, u|Ωi = ui,

we get that (y, p, u) satisfy
(3.15){

−∆y = f + u in Ω
y ∈ H1

0 (Ω),
,

{
−∆p = −(y − ytarget) in Ω,

p ∈ H1
0 (Ω),

, αu− p = 0 in Ω.
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We emphasize that (3.15) are exactly the first order conditions of optimality of the
undecomposed optimization problem (2.1). We thus obtain that

(3.16) λ∗ = (−1)i+1∂nip|Γ∩

where p satisfies the coupled system (3.15).

Remark 3.8 (Extension to more than 2 subdomains). The extension of the con-
vergence results to more subdomains mainly consists in proving that Theorem 3.2 holds
when more subdomains are involved. As shown in the appendix, the proof consists in
proving that M is injective (which can be easily adapted to a more complex decom-
position) and with closed range. This second part seems more challenging for several
subdomains and depends on how the decomposition is made. For example, the proof
of Lemma A.1 can be straightforwardly adapted to stripwise decomposition like those
used in the numerical experiments from Section 4, mainly because we do not have
subdomains with Neumann boundary condtions only. Furthermore, as long as one
supposes M∗ surjective, all the results leading to Proposition 3.6 can be easily adapted
to a context with more subdomains. This extension to more subdomains can be seen
more easily when one carries a similar analysis we did in section 3 once the problem
(3.4) is discretized ; see Appendix B.

3.3. Fourier analysis. To get more insight into the convergence behavior of
our new DD Algorithm 2.1, we study its rate of convergence in the case where the
penalization parameter ρ is kept constant during the iterations, and the domain is
unbounded, Ω := R2, with (x1, x2) a system of coordinates on R2. Let the subdomains
Ω1 := (−∞, 0) × R, Ω2 := (0,+∞) × R, and the interface Γ∩ := {0} × R. In this
setting, we can study how the iterations {λk} are converging, see e.g. [20, 26] for
this approach to study the convergence of DD methods. The necessary and sufficient
optimality conditions for (3.4) are
(3.17)

−∆yki = f + α−1pki in Ωi,

yki |∂Ω = 0,

∂ni
yki |Γ∩ = (−1)i+1gk, i = 1, 2


−∆pki + yki = ytarget,

pki |∂Ω = 0,

∂ni
pki = (−1)i

(
λk + ρ(yk1 − yk2 )

)
on Γ∩,

pk1 = pk2 on Γ∩.

Since we are interested in the error in the new DD Algorithm 2.1, without loss of gen-
erality, we will suppose that f ≡ 0 and ytarget ≡ 0, so that we can study convergence
to zero, i.e. the error equations.

We assume that λ0 has enough regularity so that its Fourier transform along the
vertical axis is well-defined. Let ω ∈ R be the Fourier variable and (ŷ, p̂) be the Fourier
transform in the x2 direction of (y, p) along the interface. The Fourier transformed
optimality conditions (3.17) then become
(3.18)
(−∂2x1

+ ω2)ŷki = α−1p̂ki in Ωi,

ŷki |∂Ω = 0,

∂x1
ŷki |Γ∩ = ĝk, i = 1, 2



(−∂2x1
+ ω2)p̂ki + ŷki = 0,

p̂ki |∂Ω = 0,

∂x1
p̂ki = −

(
λ̂k + ρ(ŷk1 − ŷk2 )

)
on Γ∩,

p̂k1 = p̂k2 on Γ∩.

In order to solve this system of ordinary differential equations, we compute ∂4x1
ŷki and

11



substitute,

∂4x1
ŷki =ω2∂2x1

ŷki − α−1∂2x1
p̂ki

=ω2∂2x1
ŷki − α−1(ω2p̂ki + ŷki )

=ω2∂2x1
ŷki − α−1ŷki − ω2(−∂2x1

ŷki + ω2ŷki )

=2ω2∂2x1
ŷki − (ω4 + α−1)ŷki .

Using the boundary conditions at infinity, the solutions are thus of the form

ŷk1 =Ck
1 exp

(
x1

√
iα− 1

2 + ω2

)
+ Ck

3 exp

(
x1

√
−iα− 1

2 + ω2

)
,

ŷk2 =Ck
2 exp

(
−x1

√
iα− 1

2 + ω2

)
+ Ck

4 exp

(
−x1

√
−iα− 1

2 + ω2

)
,

where Ck
j are constants determined by the transmission conditions. This implies for

the adjoint variables

p̂k1 =iα
1
2

(
−Ck

1 exp

(
x1

√
iα− 1

2 + ω2

)
+ Ck

3 exp

(
x1

√
−iα− 1

2 + ω2

))
,

p̂k2 =iα
1
2

(
−Ck

2 exp

(
−x1

√
iα− 1

2 + ω2

)
+ Ck

4 exp

(
−x1

√
−iα− 1

2 + ω2

))
.

The transmission conditions at x1 = 0 then yield

∂x1 ŷ
k
1 |x1=0 =Ck

1

√
iα− 1

2 + ω2 + Ck
3

√
−iα− 1

2 + ω2 = ĝk,

∂x1
ŷk2 |x1=0 =− Ck

2

√
iα− 1

2 + ω2 − Ck
4

√
−iα− 1

2 + ω2 = ĝk,

∂x1 p̂
k
1 |x1=0 =− iα

1
2

(
Ck

1

√
iα− 1

2 + ω2 − Ck
3

√
−iα− 1

2 + ω2

)
= −λ̂k+1,

∂x1
p̂k2 |x1=0 =iα

1
2

(
Ck

2

√
iα− 1

2 + ω2 − Ck
4

√
−iα− 1

2 + ω2

)
= −λ̂k+1.

Denoting by A :=
√

iα− 1
2 + ω2 and B :=

√
−iα− 1

2 + ω2, we thus need to solve the
linear system


1 0 1 0
0 −1 0 −1
1 0 −1 0
0 1 0 −1



ACk

1

ACk
2

BCk
3

BCk
4

 =


ĝk

ĝk

iα− 1
2 λ̂k+1

−iα− 1
2 λ̂k+1

 .

The inverse of the system matrix being simply half its transpose, we get

ACk
1 = −ACk

2 =
1

2
(ĝk + iα− 1

2 λ̂k+1),

BCk
3 = −BCk

4 =
1

2
(ĝk − iα− 1

2 λ̂k+1).
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Fig. 3.1: |R| for ρ = 3, α = 1e− 5 (Left) and α = 1 (Right).

Note in particular that Ck
3 = −Ck

4 and Ck
1 = −Ck

2 , and furthermore,

ŷk1 |x1=0 − ŷk2 |x1=0 = Ck
1 + Ck

3 − (Ck
2 + Ck

4 )

= 2(Ck
1 + Ck

3 )

= (A−1 +B−1)ĝk + (A−1 −B−1)iα− 1
2 λ̂k+1,

p̂k1 |x1=0 − p̂k2 |x1=0 = −iα 1
2 (Ck

1 − Ck
3 ) + iα

1
2 (Ck

2 − Ck
4 )

= −iα 1
2 (Ck

1 − Ck
3 − Ck

2 + Ck
4 )

= 2iα
1
2 (Ck

3 − Ck
1 )

= iα
1
2 (B−1 −A−1)ĝk + (A−1 +B−1)λ̂k+1.

Since p̂k1 |x1=0 − p̂k2 |x1=0 = 0, this implies ĝk = iα− 1
2
(A+B)
A−B λ̂k+1 from which we infer

ŷk1 |x1=0 − ŷk2 |x1=0 = 4iα− 1
2 (A−B)−1λ̂k+1.

Denote by D := 4iα− 1
2 (A − B)−1. Since in our new DD algorithm λ̂k = λ̂k+1 −

ρ(ŷk1 |x1=0 − ŷk2 |x1=0), substituting the expression of ŷk1 |x1=0 − ŷk2 |x1=0 gives λ̂k =

(1− ρD)λ̂k+1, and we thus obtain for the convergence factor
(3.19)

R :=
λ̂k+1

λ̂k
= (1− ρD)−1 =

1− 4iρ

α1/2
(√

ω2 + iα−1/2 −
√
ω2 − iα−1/2

)
−1

,

where we substituted the expressions for D. Direct computations show that

lim
α→0

R = 0, R =
iα1/2

4ρ

(√
ω2 + iα−1/2 −

√
ω2 − iα−1/2

)
+O

(
1

ρ2

)
.

Note that, for all α ≥ 0 and any frequency ω, |R| is strictly smaller than 1 as soon as
ρ is large enough, which indicates geometric convergence of the new DD algorithm.
We show a plot of |R| for chosen parameters in Figure 3.1. We see that convergence is
rather fast, even for low frequencies ω, and the method is a smoother: high frequencies
converge extremely fast. Such behavior is also confirmed by our numerical results
from Section 4 which show that the convergence of our decompose-then-optimize
method is robust with respect to meshsize along with the number of subdomains.
This Fourier analysis also indicates that these properties are going to hold regardless
the discretization used.
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4. Numerical experiments. We now test our algorithm on two examples. We
will mainly pay attention to how the error evolves with the number of iterations and
when the mesh is refined or the number of domains increases. An iteration here should
be understood as the number of times one solves (2.6) and updates ρ or λ; see the
while loop in Algorithm 2.1. We discretized the Laplacian using Q1 Finite Elements
on a structured cartesian mesh with step size h in both x1 and x2 directions. The
minimization problems in each iteration of our new DD algorithm are solved using the
quadprog routine of MATLAB, which uses an interior-point algorithm, and we used
τ = 5, ρ0ij = 3, and λ0ij is a random initial guess with values between 0 and 10. The

code used for the computations is available online4.

4.1. Badly insulated room. Our first example is a badly insulated room, for
which a floor heating should be designed, and we study the convergence of our new DD
method when only 5 iterations are performed. The room geometry is Ω := (−1, 1)×
(0, 1), with non-insulated walls that are at temperature zero, modeled by homogeneous
Dirichlet conditions, and we want to see how a floor heating system would have to
operate to heat it up to 20 degrees hence ytarget(x1, x2) = 20. The room has in
addition and open window at the bottom left where cold air acts as a heat sink, and
similarly a skylight on the right in the middle, see Figure 4.1 (top left). We model this

with f(x1, x2) = −3000e−50((x1−0.5)2+(x2−0.5)2) − 3000 × 1[−0.75,−0.25]×[0,0.25], where
1O is the indicator function of the set O.

We decompose the room into two subdomains Ω1 := (−1, 0) × (0, 1) and Ω2 :=
(0, 1)×(0, 1), and apply our new domain decomposition algorithm in order to compute
the optimal floor heating. We show in Figure 4.1 at the top the optimal control
found for the floor heating by our new DD algorithm (middle), and the achieved
room temperature (right), when using as penalization α = 1e − 5. We see that
such a badly insulated room is not at all suitable for floor heating, which needs to
be evenly distributed; a more classical configuration with radiators along the walls,
and especially in front of the window would be much more suitable. Floor heating
systems are only good for well insulated buildings! In the bottom row we show the
convergence of our new DD algorithm, on the left for the controls uj and on the right
for the solutions yj . The error here is the difference between the iterates of our new
DD algorithm and the solution computed on the whole domain directly, measured
in the infinity norm in volume. We see that convergence is very fast: the error is
reduces by 6 orders of magnitude in five iterations, and convergence is robust in the
mesh size h: when the mesh is refined, convergence gets actually a little faster before
approaching a limit.

We next increase the number of subdomains, using a decomposition into equal
vertical strips Ωj = (xj , xj+1) × (0, 1), xj = −1 + 2j/J , j = 0, ..., J . We show in
Figure 4.2 the errors for J = 2, 4, 8, 16 subdomains and meshsize h = 1/64. We see
that convergence is still very fast and does not depend on the number of subdomains,
the new DD method is scalable.

4.2. Convergence behavior with respect to α. We now test the convergence
properties of our new DD algorithm as α varies. To do this, we consider a model
problem inspired by [27], namely

ytarget(x1, x2) := C sin(lπx1) sin(lπx2), and f(x1, x2) := 2Cl2π2 sin(lπx1) sin(lπx2),

4https://gitlab.osureunion.fr/avieira/liquofeti
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Fig. 4.1: Badly insulated room example: heat sinks (top left), best floor heating
found by our new DD algorithm (top middle), temperature distribution achieved (top
right). Bottom left: convergence of the new DD algorithm for the control u for
different mesh sizes (log scale for the ordinate axis); bottom right: corresponding
results for the solution y (log scale for the ordinate axis).

1 2 3 4 5

iteration

10
-5

10
0

e
rr

o
r 

o
n

 c
o

n
tr

o
l 
u

h=1/64

2 subd.

4 subd.

8 subd.

16 subd.

1 2 3 4 5

iteration

10
-10

10
-5

10
0

e
rr

o
r 

o
n

 s
o

lu
ti
o

n
 y

h=1/64

2 subd.

4 subd.

8 subd.

16 subd.

Fig. 4.2: Convergence of the new DD algorithm for the control u (left) and solution
y (right) for different different numbers of subdomains for the badly insulated room
example. Both figures are with log scale for the ordinate axis.

for different parameters C ∈ R, and l ∈ N. The optimal solution is u∗ = 0 and
y∗ = ytarget, for all admissible choices of parameters C, l, α. We solve this problem with
our new DD Algorithm 2.1 using a decomposition into equal vertical strips as in the
first physical example, and convergence parameters maxij ω

k
ij = maxij η

k
ij = 10−10.

Results for different values of α, h and the number of subdomains are shown in
Table 4.1 and Figure 4.3. We see that our new DD algorithm remains robust and fast
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Fig. 4.3: Convergence of the new DD algorithm with different values of α on the
second example.

when changing the parameter α, the stepsize h and the number of subdomains. The
number of iterations needed to achieve the prescribed precision is roughly constant
in all our tests. Note nevertheless that, for large α, the rate slightly changes with a
bigger number of subdomains.

5. Conclusions. We introduced a new concept for designing domain decompo-
sition methods to solve optimal control problems in parallel: instead of following the
optimize then decompose approach, we followed the decompose then optimize ap-
proach. Using then an augmented Lagrangian algorithm for the decomposed problem
(or any other optimization technique) leads to new types of domain decomposition
methods for such problems. We studied a particular example of such a new domain
decomposition method, namely when the Dirichlet trace jump is also added as a pe-
nalization term in the augmented Lagrangian formulation.
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Many other new domain decomposition methods can be obtain this way, for example
by also including in the penalization the Neumann jump, or the entire PDE con-
straint. Our choice led to a domain decomposition method which is robust under
mesh refinement, which lets us believe that this approach for designing new domain
decomposition methods is a rather powerful one.

Appendix A. Surjectivity of operator M∗.
In this section, we will focus on proving that the derivative of the continuity con-

straint given by co : (u1, u2, g) ∈ U 7→ y1(u1, g)|Γ∩ − y2(u2, g)|Γ∩ ∈ V∩, where yi(ui, g)
solves (3.3), is surjective. This condition (called regularity condition or constraint
qualification) serves in order to prove that a minimizer of (3.2) respects the first or-
der conditions of optimality (or KKT conditions). We recall that we denote by M∗

the derivative of co with respect to (u1, u2, g). We first derive an explicit expression
for M . To do this, we introduce the Lagrangian of (3.2),

L(y, u, g, p, λ) =
2∑

i=1

∫
Ωi

∇yi · ∇pi − (−1)i+1

∫
Γ∩

gpi −
∫
Ωi

(fi + ui)pi

+
1

2

∫
Ωi

(yi − ytarget)2 +
α

2

∫
Ωi

u2i +

∫
Γ∩

(y1 − y2)λ.

where we set u := (u1, u2), y := (y1, y2) and p := (p1, p2). In order to derive an
explicit expression of M , we compute the derivative of L and obtain

∂u,gL(y(u, g), u, g, p, λ) =

 αu1 − p1
αu2 − p2
p1 − p2|Γ∩

 = ∂u,gĴ (u, g) +Mλ,

where M : V∗
∩ → U∗ is the adjoint of M∗. Using classical computations, we can also

prove that

∂u,gĴ (u, g) =

 αu1 − p̄1
αu2 − p̄2

p̄2|Γ∩ − p̄1|Γ∩

 where


−∆p̄i + yi = ytarget,

p̄i|∂Ω = 0,

∂np̄i = 0 on Γ∩.

Therefore, we get

Mλ = ∂u,gL(y(u, g), u, g, p, λ)− ∂u,gĴ (u, g) =

 q1
q2

q1|Γ∩ − q2|Γ∩

 ,

where qi = p̄i − pi ∈ H1(Ωi) is the weak solution of

(A.1)


−∆qi = 0,

qi|∂Ω = 0,

∂nqi = (−1)i+1λ on Γ∩.

Note that M does not depend on the controls.

Lemma A.1. The operator M : λ ∈ V∗
∩ 7→Mλ ∈ U∗ is injective with closed range.

Proof. Injectivity: Let λ be such that Mλ = 0. The associated qi are then
harmonic and verify the transmission condition (on Γ∩) q1|Γ∩−q2|Γ∩ = 0 and ∂n1

q1+
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∂n2
q2 = 0. As a result, qi = q|Ωi

where q ∈ H1
0 (Ω) is harmonic. Therefore q = 0 and

thus λ = ∂n1
q1 = 0.

Closed range: Let Mλn = (q1,n, q2,n, φn)
⊺ be a sequence of images such that qi,n

converges toward some qi in L2(Ωi) and φn converges toward some φ in H
1/2
00 (Γ∩).

To show that M has closed range, we have to prove that there exists λ ∈ H1/2
00 (Γ∩)

∗

such that Mλ = (q1, q2, φ)
⊺.

Step 1: Since qi,n is harmonic on Ωi, we have

∀ψi ∈ C∞c (Ωi) :

∫
Ωi

qi,n∆ψi dx = 0.

Using the L2 convergence of qi,n toward qi, we obtain that qi satisfies

∀ψi ∈ C∞c (Ωi) :

∫
Ωi

qi∆ψi dx = 0,

and Weyl’s Lemma (see e.g. [52, p. 78, Theorem 18.G]) ensures that qi ∈ C∞(Ωi)
and satisfies ∆qi = 0 pointwise in Ωi.

Step 2: Let us consider the spaces

Hi,∆ :=
{
Φi ∈ H1(Ωi) | ∆Φi ∈ L2(Ωi), Φi|∂Ωi\Γ∩ = 0

}
.

For any φ ∈ H1/2
00 (Γ∩), we denote by φ̃ its extension by zero to ∂Ωi. The latter is

in H1/2(∂Ωi) and the surjectivity of the trace operator gives the existence of some
Eφ̃ ∈ H1(Ωi) such that Eφ̃|∂Ωi

= φ̃ and ∥Eφ̃∥H1(Ωi)
≲ ∥φ̃∥

H
1/2
00 (∂Ωi)

. From the

Green’s formula, for all Φi ∈ Hi,∆,

⟨∂ni
Φi, φ⟩H1/2

00 (Γ∩)∗×H
1/2
00 (Γ∩)

=

∫
Ωi

∇Φi · ∇Eφ̃ dx+

∫
Ωi

∆Φi Eφ̃ dx,

and thus, we can prove, using the Cauchy-Schwarz inequality, that∣∣∣⟨∂ni
Φi, φ⟩H1/2

00 (Γ∩)∗×H
1/2
00 (Γ∩)

∣∣∣ ≲ ∥φ∥H1/2
00 (Γ∩)

(
∥Φi∥H1(Ωi)

+ ∥∆Φi∥L2(Ωi)

)
.

As a result, taking the supremum over all φ such that ∥φ∥
H

1/2
00 (Γ∩)

= 1, we prove that

the linear map

∂ni
: Φi ∈ Hi,∆ 7→ ∂ni

Φi ∈ H1/2
00 (Γ∩)

∗

is continuous. In addition, for any harmonic Φi ∈ Hi,∆, we have the bound

∥∂niΦi∥H1/2
00 (Γ∩)∗

≲ ∥Φi∥H1(Ωi)
≲ ∥∇Φi∥L2(Ωi)

,

where we used the Poincaré inequality to get the last upper bound.
Step 3: Both qi,n satisfy the weak formulation

∀ψi ∈ Vi :
∫
Ωi

∇qi,n · ∇ψi dx = ⟨∂ni
qi,n, ψi⟩H1/2

00 (Γ∩)∗×H
1/2
00 (Γ∩)

,

where Vi :=
{
ψi ∈ H1(Ωi) | ψi|∂Ωi\Γ∩ = 0

}
. Now taking ψi = qi,n, one gets∑

i

∥∇qi,n∥2L2(Ωi)
= ⟨∂ni

q1,n, q1,n⟩H1/2
00 (Γ∩)∗×H

1/2
00 (Γ∩)

+ ⟨∂n2
q2,n, q2,n⟩H1/2

00 (Γ∩)∗×H
1/2
00 (Γ∩)

= ⟨∂n1
q1,n, q1,n − q2,n⟩H1/2

00 (Γ∩)∗×H
1/2
00 (Γ∩)

= ⟨∂n1q1,n, φn⟩H1/2
00 (Γ∩)∗×H

1/2
00 (Γ∩)

,
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where we used that ∂n1
q1,n|Γ∩ + ∂n2

q2,n|Γ∩ = 0 and that, due to the definition of M ,
we have φn = q1,n − q2,n. Using now Step 2, we obtain that∑

i

∥∇qi,n∥2L2(Ωi)
≤ ∥∂ni

q1,n∥H1/2
00 (Γ∩)∗

∥φn∥H1/2
00 (Γ∩)

≲ ∥∇q1,n∥L2(Ω1)
∥φn∥H1/2

00 (Γ∩)
.

Using finally Young’s inequality, we get∑
i

∥∇qi,n∥2L2(Ωi)
≲ ∥φn∥2H1/2

00 (Γ∩)
.

Since φn is assumed to converge toward φ, it is bounded and thus the sequences
(qi,n)n are also bounded (uniformly with respect to n) in H1(Ωi). We can then
extract subsequences that converge weakly in H1(Ωi) toward qi. The trace operator
being compact, we obtain that qi|∂Ωi\Γ∩ = 0 and φ = q1|Γ∩ − q2|Γ∩ . Since qi ∈ Vi
is harmonic, it also belongs to Hi,∆ and its normal derivative can be defined as an

element of H
1/2
00 (Γ∩)

∗.

Step 4: We now identify the limit of the sequence λn. Let η ∈ H1/2
00 (Γ∩), since

its extension by zero (denoted by η̃) over ∂Ωi is in H
1/2(∂Ωi), we have some Eiη̃ ∈ Vi

such that Eiη̃|∂Ωi
= η̃ and ∥Eiη̃∥H1(Ωi)

≲ ∥η̃∥
H

1/2
00 (Γ∩)

. Using that λn = (−1)i+1∂ni
qi,n

and the weak formulation satisfied by qi,n, we have

⟨λn, η⟩H1/2
00 (Γ∩)∗×H

1/2
00 (Γ∩)

=
1

2
⟨∂n1q1,n, E1η̃|Γ∩⟩H1/2

00 (Γ∩)∗×H
1/2
00 (Γ∩)

−1

2
⟨∂n2

q2,n, E2η̃|Γ∩⟩H1/2
00 (Γ∩)∗×H

1/2
00 (Γ∩)

=
1

2

∫
Ω1

∇q1,n · ∇E1η̃ dx−
1

2

∫
Ω2

∇q2,n · ∇E2η̃ dx.

Now passing to the limit (after extracting a subsequence), we obtain that

lim
n→+∞

⟨λn, η⟩H1/2
00 (Γ∩)∗×H

1/2
00 (Γ∩)

=
1

2

∫
Ω1

∇q1 · ∇E1η̃ dx−
1

2

∫
Ω2

∇q2 · ∇E2η̃ dx

=

〈
1

2
(∂n1

q1 − ∂n2
q2) , η

〉
H

1/2
00 (Γ∩)∗×H

1/2
00 (Γ∩)

.

We have then proved that (λn)n ⊂ H
1/2
00 (Γ∩)

∗ has a subsequence converging toward
λ = 1

2 (∂n1q1 − ∂n2q2). We emphasize that each qi is unique since it is defined as the
L2-limit of qi,n and then the limit of the subsequence of (λn) is also unique. Urysohn’s
subsequence principle finally proves that the whole sequence λn converges toward λ.
Since Mλ = (q1, q2, q1|Γ∩ − q2|Γ∩)

t = (q1, q2, φ)
t this proves that the range of M is

closed.

Applying now [10, Théorème II.20], we obtain Theorem 3.2.

Appendix B. Surjectivity of operator M∗ when discretized with finite
element.

Using a standard Galerkin method to discretize the continuous optimal control
problem (3.2) following the notations in [19], we can go left the black arrow in the
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middle of Figure 1.1 and obtain the discrete optimal control problem

(B.1)

min

2∑
i=1

1

2
(yi − ytargeti)

⊺Ni(yi − ytargeti) +
α

2
u⊺
iNiui

s.t.

{
Kiyi = Fi +Niui + (−1)i+1B⊺

i g, i = 1, 2,

B1y1 −B2y2 = 0,

where yi ∈ Rns
i+nI

is the vector of degrees of freedom of the finite element approxi-
mation of yi, n

s
i is the number of interior nodes in Ωi and n

I the number of interface
nodes on Γ∩, and Bi is of the form Bi = [0i, Ii], i = 1, 2, where 0i is an n

I × nsi zero
matrix, and Ii is the nI × nI identity matrix. Ki is the stiffness matrix and Ni the
mass matrix, that are both invertible.

Solving this discrete optimal control problem (B.1) with the same new DD algo-
rithm based on the augmented Lagrangian approach leads to the decoupled augmented
discrete Lagrangian
(B.2)

min

2∑
i=1

1

2
(yi(ui, g)− ytargeti)

⊺Ni(yi(ui, g)− ytargeti) +
α

2
u⊺
iNiui

+ (λk)⊺(B1y1(u1, g)−B2y2(u2, g)) +
ρk

2
∥B1y1(u1, g)−B2y2(u2, g)∥22,

where yi(ui, g) satisfy

Kiyi = Fi +Niui + (−1)i+1B⊺
i g, i = 1, 2.

As in the continuous framework, the convergence of our new DD method given by
Algorithm 2.1 depends on the surjectivity of the derivative of M∗

h : (u1,u2, g) 7→
B1y1(u1, g)−B2y2(u2, g) where yi(ui, g) verify Kiyi = Fi+Niui+(−1)i+1B⊺

i g, i =
1, 2 (see (3.12) and A for this property at the continuous level).

Proposition B.1. The derivative of M∗
h w.r.t. (u1,u2, g) is onto.

Proof. Note first that

B1y1(u1, g)−B2y2(u2, g) =
(
B1K

−1
1 N1 −B2K

−1
2 N2 B1K

−1
1 B⊺

1 −B2K
−1
2 B⊺

2

) u1

u2

g


+B1K

−1
1 F1 −B2K

−1
2 F2.

Therefore, the derivative of M∗
h is simply given by

∂M∗
h =

(
B1K

−1
1 N1 −B2K

−1
2 N2 B1K

−1
1 B⊺

1 −B2K
−1
2 B⊺

2

)
.

In order to prove that ∂M∗
h is surjective, we will prove that (∂Mh) is injective. Let

λ ∈ RnI

. Suppose (∂Mh)λ = 0. This implies that

K−⊺
1 B⊺

1N1λ = 0

−K−⊺
2 B⊺

2N2λ = 0

(B1K
−⊺
1 B⊺

1 −B2K
−⊺
2 B⊺

2 )λ = 0

⇐⇒
B⊺

1N1λ = 0

B⊺
2N2λ = 0

⇐⇒ λ = 0.
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The proof of the convergence of our new discrete DD algorithm to the solutions
of (B.1) can then be done as in the Section 3, or can be found in [6]. Note also that in
this discrete context, the extension to a striped decomposition with more subdomains
becomes easier, since only the injectivity of M needs to be proved .
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[4] Mäıtine Bergounioux and Mounir Haddou. A SQP-augmented Lagrangian method for opti-
mal control of semilinear elliptic variational inequalities. In Control and Estimation of
Distributed Parameter Systems, pages 57–72. Springer, 2003.
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#subd. h α Err. on y Err. on u Err. on g Cost # it.

2

1/64

1.0e+01 1.03e-09 1.81e-12 4.02e-08 4.18e-21 6
1.0e+00 1.07e-09 1.87e-11 4.02e-08 4.49e-21 6
1.0e-02 5.78e-10 8.58e-10 4.02e-08 1.14e-21 6
1.0e-04 1.50e-09 4.69e-08 4.03e-08 2.06e-21 5
1.0e-06 5.30e-09 1.62e-06 4.14e-08 2.67e-21 4

1/256

1.0e+01 1.11e-09 1.97e-12 4.92e-11 4.91e-21 6
1.0e+00 1.12e-09 1.98e-11 4.93e-11 4.98e-21 6
1.0e-02 7.35e-10 1.09e-09 4.65e-11 1.83e-21 6
1.0e-04 1.43e-09 4.45e-08 7.58e-11 1.84e-21 5
1.0e-06 4.68e-09 1.48e-06 6.34e-10 2.64e-21 4

4

1/64

1.0e+01 2.64e-10 5.06e-13 4.01e-08 2.06e-22 6
1.0e+00 2.11e-10 3.85e-12 4.01e-08 1.45e-22 6
1.0e-02 2.46e-10 2.88e-10 4.01e-08 2.00e-22 6
1.0e-04 1.42e-09 4.17e-08 4.03e-08 4.59e-21 5
1.0e-06 6.33e-09 1.72e-06 4.22e-08 9.48e-21 4

1/256

1.0e+01 3.12e-10 6.09e-13 4.20e-11 3.07e-22 6
1.0e+00 3.59e-10 6.68e-12 4.24e-11 4.29e-22 6
1.0e-02 2.14e-10 2.50e-10 4.13e-11 1.97e-22 6
1.0e-04 1.53e-09 4.47e-08 7.43e-11 4.68e-21 5
1.0e-06 4.71e-09 1.49e-06 6.58e-10 7.82e-21 4

8

1/64

1.0e+01 1.66e-09 6.25e-12 4.02e-08 3.00e-20 6
1.0e+00 1.83e-09 6.10e-11 4.02e-08 3.36e-20 6
1.0e-02 7.39e-10 2.23e-09 4.02e-08 4.28e-21 6
1.0e-04 7.98e-10 2.36e-08 4.02e-08 1.01e-21 5
1.0e-06 6.35e-09 2.01e-06 4.22e-08 2.23e-20 4

1/256

1.0e+01 8.14e-10 3.05e-12 4.59e-11 7.94e-21 6
1.0e+00 1.31e-09 4.43e-11 4.96e-11 1.78e-20 6
1.0e-02 3.64e-10 1.18e-09 4.26e-11 1.31e-21 6
1.0e-04 1.01e-09 3.25e-08 4.28e-11 1.61e-21 5
1.0e-06 5.09e-09 1.65e-06 6.69e-10 2.01e-20 4

16

1/64

1.0e+01 1.41e-09 5.91e-12 4.02e-08 4.37e-20 7
1.0e+00 1.05e-09 4.70e-11 4.02e-08 2.57e-20 7
1.0e-02 2.11e-10 6.16e-10 4.01e-08 4.69e-22 7
1.0e-04 4.50e-10 2.40e-08 4.02e-08 5.22e-22 5
1.0e-06 5.56e-09 1.55e-06 4.14e-08 1.43e-20 4

1/256

1.0e+01 1.25e-09 5.35e-12 5.00e-11 3.53e-20 7
1.0e+00 1.54e-09 6.75e-11 5.30e-11 5.62e-20 7
1.0e-02 2.78e-10 1.17e-09 4.24e-11 1.70e-21 7
1.0e-04 5.00e-10 2.56e-08 4.21e-11 6.82e-22 5
1.0e-06 4.59e-09 1.37e-06 5.92e-10 1.26e-20 4

Table 4.1: Errors on the optimal solution for the second example using different values
of α and number of subdomains. The parameters were fixed as l = 2, C = 1.
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