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A PRIORI ERROR ESTIMATE FOR THE REDUCED HSIEH-CLOUGH-TOCHER

DISCRETIZATION OF VISCOSITY IDENTIFICATION IN NAVIER-STOKES

EQUATIONS ∗

Alexandre Vieira1

Abstract. We are interested in the problem of identifying the viscosity of a fluid based on observa-
tions. This analysis is twofold. First, a stability property of the inverse problem is proved. Secondly,
we analyse the discretization of the optimization problem using reduced Hsieh-Clough-Tocher elements,
and a convergence with order 3/2 of the identified viscosity with respect to the mesh size is determined.
We conclude the paper with some numerical examples showing that this 3/2 order might be enhanced
with correct assumptions.
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1. Introduction

We consider the problem of identifying the viscosity in a stationary incompressible Navier-Stokes equations
based on observations of the velocity of a fluid. More precisely, we are interested in analyzing the well-posedness
of this identification problem, and how it behaves once discretized using reduced Hsieh-Clough-Tocher (rHCT)
finite elements. This inverse problem of finding the viscosity based on observation has already gathered interest,
mainly due to the possible extension of these results on real-world problems. We cite for instance [15,21,23,24],
which are mainly interested in the identification of the viscosity distribution based on observations on the
boundary. In our case, we will suppose that we have observations on the whole domain, and we are more
interested in studying the effect of the discretization on this parameter identification.

Model studied Let Ω ⊂ R2 be a simply connected open set. We are interested in the steady incompressible
Navier-Stokes equations, reading:

− ν∆u+ (u · ∇)u+∇p = f in Ω,

∇ · u = 0,

u|∂Ω = 0,

(1)
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where f ∈ L2(Ω) is a given source term, ∇· denotes the divergence, u is the velocity vector field, p the pressure,
and ν the unknown viscosity of the fluid, assumed to be a constant. Throughout this article, we will suppose
that ν ∈ [νmin, νmax] for some given νmin and νmax > νmin.

In order to take easily into account the incompressibility condition, we use a stream function formulation.
We denote Wm,p(Ω) the Sobolev space of functions whose derivatives up to order m is in Lp(Ω), and we denote
Hk(Ω) = W k,2(Ω). Using common notations, we denote H1

0 (Ω) the set of functions in H1(Ω) with no-slip
boundary condition, meaning the trace on the border of Ω vanishes. Define V = {ψ ∈ H1

0 (Ω) ∩H2(Ω) | ∂nψ =
0 on ∂Ω} where n denotes the outward normal vector to ∂Ω. Using [17, Corollary 3.2], we notice that the
operator curl = ∇× defines an isomorphism between V and V = {u ∈ H1

0 (Ω)
2 | ∇ · u = 0}. We therefore

define the function ψ ∈ V such that u = ∇ × ψ, and define a weak formulation verified by ψ. Following the
calculations in [9] (see also [14]), ψ is the solution of the variational equation:

ν

∫
Ω

∆ψ∆χ−
∫
Ω

∆ψ[ψ, χ] =

∫
Ω

f∇× χ, ∀χ ∈ V, (2)

where [ψ, χ] = ∂xψ∂yχ − ∂yψ∂xχ is the Poisson bracket. For scalar functions ψ, χ, ϕ ∈ V, we will denote
a0(ψ, χ) =

∫
Ω
∆ψ∆χ and a1(ψ, ϕ, χ) =

∫
Ω
−∆ψ[ϕ, χ]. We can show that there exists Γ1 > 0 such that

a1(ψ, χ, ϕ) ≤ Γ1|ψ|2|χ|2|ϕ|2, ∀ψ, χ, ϕ ∈ V. (3)

Due to the antisymmetry of the Poisson bracket, one also has the equality a1(ψ, χ, χ) = 0 for all ψ, χ ∈ V.
Since we will mainly focus on the the evolution of ψ when the viscosity ν changes, we will denote ν 7→ ψ(ν) the
operator which assigns ν to the solution ψ of (2).

Discretization We discretize the weak formulation (2) with a finite element method. We will use reduced
Hsieh-Clough-Tocher (rHCT) finite elements [10], which are built in order to compute C1 solutions and were
designed for solving fourth order PDEs such as (2). We suppose we are given a family {Th}h>0 of shape regular
quasi-uniform meshes Th = {K} consisting of closed triangle cells K. The cell parameter hK is the diameter of
K, and we define the mesh parameter h as the maximal cell size, i.e. h = maxK∈Th

hK . Denote Vh ⊂ V the
internal approximation of V using rHCT elements based on the tessellation Th. We recall an interpolation error
result for the interpolant built on the rHCT elements. In the following, we will denote, for g ∈ Hk(Ω), the semi
norm

|g|k =

 ∑
|α|=k
α∈N

∥Dαg∥2L2(Ω)


1
2

.

Theorem 1.1. [10] Let v ∈ H3(Ω) ∩ V. Given a regular family of rHCT triangles, define Πhv ∈ Vh the
interpolation operator. Then:

|v −Πhv|m ≲ h3−m|v|3, m = 0, 1, 2.

We now want to solve the approximated equation:

νha0(ψh, χh) + a1(ψh, ψh, χh) =

∫
Ω

f∇× χh, ∀χh ∈ Vh, (4)

where νh is a constant scalar in a neighborhood of ν. Similarly, we will denote νh 7→ ψh(νh) the operator
which assigns νh to the solution ψh of (4). We can show convergence properties of this approximated solution.
Theorem 1.1 is used in [14] to prove the convergence of the discretized solution of (4) towards the solution of
(2) in the case where νh = ν. This result needs a smoothness assumption on the following helper equation: for
g ∈ L2(Ω), let ζ ∈ V be the solution of the equation:

L(ζ, χ) = νa0(ζ, χ) + a1(χ, ψ(ν), ζ) + a1(ψ(ν), χ, ζ) = ⟨g, χ⟩, ∀χ ∈ V, (5)
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where ⟨·, ·⟩ is the L2 duality pairing. Equation (5) can be seen as a linearized version of the Navier-Stokes
equation.

Throughout this article, we will need the following hypothesis.

(H0): For all g ∈ L2(Ω), one has ζ ∈ H4(Ω) ∩ V and |ζ|4 ≲ ∥g∥L2(Ω).

(H1): f ∈ L2(Ω) and ν ∈ [νmin, νmax] where νmin > (∥f∥L2(Ω)Γ1)
1
2 and νmax > νmin.

(H2): ∥f∥L2(Ω) ̸= 0.

We restate the result concerning the order of convergence for ψh here.

Theorem 1.2. [14] Suppose that (H0)-(H1) are verified. Let ψ = ψ(ν) ∈ V be the solution of (2) and
ψh = ψh(ν) ∈ Vh be the solution of (4), both associated to the same parameter ν ∈ [νmin, νmax]. Assume that
ψ ∈ H3(Ω). Then:

∥ψ − ψh∥L2(Ω) + h
1
2 ∥∇(ψ − ψh)∥L2(Ω) + h∥∆(ψ − ψh)∥L2(Ω) ≲ h2.

Sketch of proof Based on [9, Theorem 2.2] and using theorem 1.1, one easily proves that |ψ − ψh|2 ≤ ch
with c independent of ν. In (5), choose χ = ψh − ψ and denote ζh = Πhζ. After some calculations, one proves
that:

⟨g, ψh − ψ⟩ =a0(ψh − ψ, ζ − ζh) + a1(ψ,ψh − ψ, ζh − ζ)

+ a1(ψh − ψ,ψh, ζ − ζh) + a1(ψh − ψ,ψ − ψh, ζ).

Thus, using (H0):

|⟨g, ψh − ψ⟩| ≤|ψh − ψ|2|ζ − ζh|2(νmax + Γ1|ψ|2 + Γ1|ψh|2) + Γ1|ψh − ψ|22|ζ|2
≲h2β(|ζ|k + |ζ|2)

≲h2β |g|0.

Choosing g = ∆(ψ − ψh) and g = ψ − ψh yields the desired results. □

Remark 1.1. As stated in [9], (H0) will hold if Ω is a polygon with maximum interior vertex angle lower than
126° ; see [4] for details.

Viscosity identification Our approach to identify the viscosity parameter ν given some measurement of
the velocity on the whole domain will be to minimize a quadratic gap to the observation. More precisely, we
will solve the following problem:

min J(ν) = ∥∇ × ψ(ν)− utarget∥2L2(Ω)

s.t.

{
ψ(ν) solution of (2),

ν ∈ [νmin, νmax],

(6)

for some given νmin > (Γ1∥f∥L2(Ω))
1
2 and νmax > νmin. The solution of the continuous problem will be compared

to the solution of its discretized counterpart:

min Jh(νh) = ∥∇ × ψh(νh)− Π̃hutarget∥2L2(Ω)

s.t.

{
ψh(νh) solution of (4),

νh ∈ [νmin, νmax],

(7)

where the operator Π̃h is any interpolation operator for which we will only suppose that ∥utarget−Π̃hutarget∥L2(Ω) =

O(h
3
2 ). In the case of reduced HCT elements, Π̃h can simply be taken as the projection of the reduced HCT

interpolator solely on the derivatives (up to a rotation). It should be noted that if, for some ν∗ ∈ [νmin, νmax],
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we have at hand observations utarget = ∇× ψ(ν∗) (such that ∇utarget ̸= 0) with perfect accuracy (i.e. ψ(ν∗) is
a solution of (2) and no noise is added), then the parameter minimizing (6) can be simply found: in (2), choose
χ = ψ(ν∗). After simple calculations, one finds

ν∗ =

∫
Ω
futarget

∥∇utarget∥2L2(Ω)

.

Nonetheless, this supposes that the data utarget is known perfectly, with no noise, and is a solution of the
Navier-Stokes solution for a given viscosity. However, it is rare to have data with no noise or solution of the
equations, and we will show that the approach chosen in (6) still works without assumptions on utarget being
solution of a Navier-Stokes equation. Moreover, this result says nothing on the convergence of νh, solution of
(7), towards ν, solution of (6).

Convergence of the identified parameter Denote ν a solution of (6) and νh a solution of (7). The
main goal of this paper will be to quantify the error |ν − νh| for h tending to zero. This study is close
to several numerical analysis studies for optimal control problems governed by partial differential equations,
see for instance [11–13, 19, 20, 25, 30]. The studies focusing on numerical analysis for parameter identification
are more rare. This paper is heavily influenced by two articles. First, Cayco and Nicolaides in [9] analyze the
convergence of a pressure recovery algorithm. Their study is focused first on proving an analogue to theorem 1.2
using (non reduced) Hsieh-Clough-Tocher elements, before moving to the pressure reconstruction. Secondly,
Rannacher and Vexler in [31] are interested in the identification of scalar parameters in an elliptic linear model
using pointwise state observations. In this context, they analyze the discretization of the equation using linear
shape functions. They prove the order of convergence of the parameters identified with the discretized problem
towards the solution of the continuous problem. Other results in this topic can be found in [5, 22,28,29,33].

Another approach for identifying parameters is to use nudging. The original use of nudging is for system
identification, meaning it consists in adding a feedback term in a non-stationary model in order to penalize
the deviation from the observed data. However, this needs the model to be known exactly, including all the
parameters, except for the initial condition. Azouani, Olson, and Titi in [1] proposed an algorithm in order to
adapt the nudging technique to retrieve unknown parameters based on observations. It is now commonly known
as the AOT algorithm and has been recently used on the non-stationary Navier-Stokes equations ; see [3,7,27].

However, our identification problem (6) lies out of these results for several reasons. First, we use rHCT
elements, where most of the literature focus on linear or bilinear C0 finite elements. Secondly, for the papers
focusing on scalar parameters identification, none focus on the stationary Navier-Stokes equation, and the inverse
problem is not analyzed as an optimization problem. We also stress the fact that this parameter identification
problem is analyzed using the stream function formulation, which must be discretized with an appropriate
method since it becomes a fourth order PDE. To the best of our knowledge, a numerical analysis study of a
non-linear inverse problem using C1 conforming elements is still new, exception made of [9] where they use
(non reduced) Hsieh-Clough-Tocher elements for pressure identification. The linear case has also gathered only
a limited amount of results ; see e.g. [2, 6, 16,18,26,32].

Content The rest of this paper is organized as follows. First, we will analyze the solution map ν 7→ ψ(ν)
and prove its derivability and injectivity. This will let us show a Lipschitz property on the inverse problem,
which proves a stability property for the problem (6). Secondly, we analyze the convergence of νh towards ν

and prove its order of convergence. More precisely, we prove, under some hypothesis, that |ν − νh| = O(h
3
2 ) in

theorem 3.2. Finally, we conclude this paper with some numerical examples.
In what follows, we will denote a ≲ b if there exists C > 0 (independent of h) such that a ≤ Cb.

2. Analysis of the solution map

We start our study with the analysis of the solution map ν 7→ ψ(ν). We will mainly be interested in proving
its derivability and injectivity. The derivability will be useful in order to analyze (6), since it appears in the
derivative of the cost J ′. The injectivity will be used to prove the well-posedness of the inverse problem ; more
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precisely, we will prove that |ν − µ| ≲ |ψ(ν) − ψ(µ)|1. Thus, bringing J(ν) to 0 let us exactly identify the
viscosity. Furthermore, it proves that the problem is stable with respect to perturbation of the observation
utarget.

2.1. Properties of the solution map

We first recall a result on the boundedness of the solution, exposed in [9, Theorem 2.1].

Theorem 2.1. Let f ∈ L2(Ω). Denote ψ = ψ(ν) ∈ V the solution of (2) associated to the parameter ν ∈
[νmin, νmax]. Then |ψ|2 ≤ ∥f∥L2(Ω)

ν . Analogously, denote ψh = ψh(νh) ∈ Vh the solution of (4) associated to the

parameter νh ∈ [νmin, νmax]. Then |ψh|2 ≤ ∥f∥L2(Ω)

νh
.

This result is useful in order to prove the existence of solution to the linearized Navier-Stokes equations. For
the sake of completeness, we prove the existence and uniqueness of solution to (5).

Proposition 2.1. Suppose (H1) is verified. For all g ∈ L2(Ω), there exists a unique solution ζ to (5).

Proof. This is proved using Lax-Milgram theorem. L is obviously bilinear. Using (3), one proves that L is
continuous. Concerning the coercivity, note that a1(ψ(ν), ζ, ζ) = 0. Furthermore, using theorem 2.1:

νa0(ζ, ζ) + a1(ζ, ψ(ν), ζ) ≥(ν − Γ1|ψ(ν)|2)|ζ|22

≥ν
(
1−

Γ1∥f∥L2(Ω)

ν2

)
|ζ|22

≥νmax

(
1−

Γ1∥f∥L2(Ω)

ν2min

)
|ζ|22

≥νmax|ζ|22

Thus, there exists a unique solution ϕν of (5). □

We may now prove the derivability results concerning the solution map.

Theorem 2.2. Suppose (H1) is verified. Denote ψ(ν) the solution to (2) associated to ν ∈ [νmin, νmax]. The
application ψ : ν ∈ [νmin, νmax] 7→ ψ(ν) ∈ V is continuous and differentiable. Its derivative at point ν is the
operator dψν : R → V which maps δ to the unique solution ϕν of:

νa0(ϕν , χ) + a1(ϕν , ψ(ν), χ) + a1(ψ(ν), ϕν , χ) = −δa0(ψ(ν), χ),∀χ ∈ V. (8)

Furthermore, the operator ν 7→ dψν ∈ L(R,V) is continuous.

Proof. Let ν ∈ [νmin, νmax], and let δ such that ν+δ ∈ [νmin, νmax]. We will denote ψ = ψ(ν) and ψδ = ψ(ν+δ).
Thus, ψ − ψδ satisfies the equation:

ν

∫
Ω

∆(ψ − ψδ)∆χ+ a1(ψ − ψδ, ψ, χ) + a1(ψδ, ψ − ψδ, χ) = δ

∫
Ω

∆ψδ∆χ, ∀χ ∈ V.

Let us choose χ = ψ − ψδ. Therefore:

ν|ψ − ψδ|22 = −a1(ψ − ψδ, ψ, ψ − ψδ) + δ

∫
Ω

∆ψδ∆(ψ − ψδ),

≤ Γ1|ψ − ψδ|22|ψ|2 + δ|ψδ|2|ψ − ψδ|2.
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Using theorem 2.1, and bounding ν−1 et (ν + δ)−1 by ν−1
min, we prove the estimate:

|ψ − ψδ|22 ≤
Γ1∥f∥L2(Ω)

ν2min

|ψ − ψδ|22 +
∥f∥L2(Ω)

ν2min

δ|ψ − ψδ|2

⇐⇒
(
1−

Γ1∥f∥L2(Ω)

ν2min

)
|ψ − ψδ|2 ≤

∥f∥L2(Ω)

ν2min

δ.

Since we assumed that 1− Γ1∥f∥L2(Ω)

ν2
min

> 0, it shows that |ψ − ψδ|2 = O(δ).

Denote now δ ∈ R fixed and small enough. The proof of the existence of a unique solution to (8) is similar
to proposition 2.1 and is therefore omitted. As for theorem 2.1, we can prove that there exists C > 0 such that
|ϕν |2 ≤ Cδ. Define eδ = ψ − ψδ − ϕν , which verifies the equation: for all χ ∈ V:

ν

∫
Ω

∆eδ∆χ+ a1(eδ, ψ, χ) + a1(ψ − ψδ, eδ, χ) = δ

∫
Ω

∆(ψ − ψδ)∆χ+ a1(ψ − ψδ, ψ − ψδ, χ).

Testing the equation with χ = eδ yields:

ν|eδ|22 = −a1(eδ, ψ, eδ) + δ

∫
Ω

∆eδ∆(ψ − ψδ) + a1(ψ − ψδ, ψ − ψδ, eδ),

≤ Γ1|eδ|22|ψ|2 + δ|ψ − ψδ|2|eδ|2 + Γ1|ψ − ψδ|22|eδ|2.

Using once again theorem 2.1, one shows that there exists C such that:(
1−

Γ1∥f∥L2(Ω)

ν2min

)
|eδ|2 ≤ Cδ2,

and thus, |eδ|2 = O(δ2).
Eventually, let us show that ν 7→ dψν is continuous. Take δ fixed and small enough, and ϵ ∈ R such that

ν + ϵ belongs to [νmin, νmax]. Let ψν = ψ(ν) (resp. ψϵ = ψ(ν + ϵ)) be the solution to (2) associated to ν (resp.
ν + ϵ). Let ϕν = ϕν(δ) = dψν(δ) (resp. ϕϵ = ϕν+ϵ(δ) = dψν+ϵ(δ)) be the solution of (8) associated to ψν (resp.
ψϵ), and define eϵ = ϕν − ϕϵ. This function is solution to the equation: for all χ ∈ V:

ν

∫
Ω

∆eϵ∆χ+ a1(eϵ, ψϵ, χ) + a1(ϕν , ψϵ − ψν , χ)

+ a1(ψϵ, eϵ, χ) + a1(ψϵ − ψν , ϕν , χ)

= −δ
∫
Ω

∆(ψϵ − ψν)∆χ− ϵ

∫
Ω

∆ψϵ∆χ.

One chooses χ = eϵ:

ν|eϵ|22 =− a1(eϵ, ψϵ, eϵ)− a1(ϕν , ψϵ − ψν , eϵ)− a1(ψϵ − ψν , ϕν , eϵ)

− δ

∫
Ω

∆(ψϵ − ψν)∆eϵ − ϵ

∫
Ω

∆ψϵ∆eϵ,

≤
Γ1∥f∥L2(Ω)

νmin
|eϵ|22 + Cδϵ|eϵ|2 + ϵ|ψϵ|2|eϵ|2.

With the same calculations as before, this proves that there exists C > 0 such that:

|eϵ|2 ≤ C(δϵ+ ϵ).
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Therefore:
∥dψν+ϵ − dψν∥L(R,V) ≤ C sup

δ≤1
(δϵ+ ϵ) ≤ 2Cϵ,

thus proving the continuity of the application ν 7→ dψν . □

We now state the injectivity result of the solution map.

Theorem 2.3. Suppose (H2) is verified. Then the operator ν ∈ [νmin, νmax] 7→ ψ(ν) ∈ H2(Ω) is injective.
Also, for all ν ∈ [νmin, νmax], the application δ 7→ dψν(δ), defined by (8), is injective.

Proof. Define ν and µ in [νmin, νmax] such that ψ(ν) = ψ(µ) almost everywhere in Ω. Using (2), we have the
following equality:

(ν − µ)

∫
Ω

∆ψ(ν)∆χ = 0, ∀χ ∈ V.

Choosing χ = ψ(ν) proves that (ν − µ)|ψ(ν)|22 = 0. Suppose that ν ̸= µ. Therefore, |ψ(ν)|2 = 0, and this
implies that ∆ψ(ν) = 0 almost everywhere in Ω. Going back to the weak formulation (2) verified by ψ(ν), this
implies that (f,∇ × χ) = 0 for all χ ∈ V. Therefore, one should have f = 0 almost everywhere in Ω, which
contradicts the hypothesis (H2) ∥f∥L2(Ω) ̸= 0. Therefore µ = ν.

The injectivity of δ 7→ dψν(δ) is proved similarly using the weak formulation (8). □

2.2. Well-posedness of the inverse problem

Analysis of the optimization problem First of all, we must check that the problem (6) admits a solution.
This is proved in the

Proposition 2.2. Suppose (H1) is verified. Then their exists at least one solution to the problem (6).

Proof. As per theorem 2.2, the application ν ∈ [νmin, νmax] 7→ ∥∇×ψ(ν)−utarget∥2L2(Ω) ∈ R is continuous (and

differentiable), defined on a compact space. Due to Weierstrass’ theorem, this application admits a minimum
on [νmin, νmax]. □

Analysis of the inverse problem Now, we would like to know if the inverse problem of identifying the
viscosity is well defined. This is answered in the two following results.

Proposition 2.3. Suppose (H1) and (H2) are verified. Then the following estimate holds:

∀ν, µ ∈ [νmin, νmax], |ν − µ| ≲ ∥ψ(ν)− ψ(µ)∥L2(Ω).

Proof. This is an adaptation of the proof of [5, Theorem 2.1]. Let us consider the mapping T : (µ, δ) ∈
[νmin, νmax]× R 7→ dψµ(δ) ∈ V and prove that it is continuous. Choose µ, ν ∈ [νmin, νmax], δ1, δ2 ∈ R.

|dψν(δ1)− dψµ(δ2)|2 ≤|(dψν − dψµ)(δ1)|2 + |dψµ(δ1 − δ2)|2
≤∥dψν − dψµ∥L(R;V)|δ1|+ ∥dψν∥L(R;V)|δ1 − δ2|.

Using theorem 2.2, one proves the continuity of T .
By the injectivity of δ 7→ dψν(δ) proved in theorem 2.3, there exists c > 0 such that:

∥dψν(δ)∥L2(Ω) ≥ c|δ|, ∀δ ∈ R, ∀µ ∈ [νmin, νmax].

Due to the continuity of T , for all ε > 0, if ν, µ ∈ [νmin, νmax] satisfy |ν − µ| ≤ ε, then there exists some c′ > 0
such that:

∥(dψν − dψµ)(δ)∥L2(Ω) ≲ |(dψν − dψµ)(δ)|2 ≤ c′ε|δ|.
We choose ε = c

2c′ in order to get ∥(dψν −dψµ)(δ)∥L2(Ω) ≤ c
2 |δ|. Let us take µ, ν ∈ [νmin, νmax]. We differentiate

two cases:
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• Suppose that |µ− ν| < ε. Denote δ = µ− ν. We have that:

ψ(µ)− ψ(ν) =

∫ 1

0

d

ds
ψ(ν + sδ)ds = dψν(δ) +

∫ 1

0

(dψν+sδ − dψν)(δ)ds,

and therefore:

∥ψ(µ)− ψ(ν)∥L2(Ω) ≥
c

2
|µ− ν|.

• Consider now the case |µ−ν| ≥ ε. Due to the injectivity of ψ proved in theorem 2.3, the minimum m of
the continuous map (µ, ν) 7→ ∥ψ(µ)− ψ(ν)∥L2(Ω) on the compact set U = {(µ, ν) ∈ [νmin, νmax]

2 ; |ν −
µ| ≥ ε} is positive: m > 0. Furthermore, for all µ, ν ∈ U , ∥ψ(µ)−ψ(ν)∥L2(Ω) ≥ m ≥ m

d |µ− ν|, where d
is the diameter of U .

If one takes C = max
(
2
c ,

d
m

)
, this proves that, for all µ, ν ∈ [νmin, νmax], |µ− ν| ≤ C∥ψ(µ)−ψ(ν)∥L2(Ω). □

Corollary 2.1. Suppose (H1) and (H2) are verified. Then the following estimate holds:

∀ν, µ ∈ [νmin, νmax], |ν − µ| ≲ ∥∇ × ψ(ν)−∇× ψ(µ)∥L2(Ω).

Proof. Simply remark that ∥∇×ψ(ν)−∇×ψ(µ)∥L2(Ω) = ∥∇ψ(ν)−∇ψ(µ)∥L2(Ω) and use Poincaré’s inequality
on proposition 2.3. □

We underline the fact that all the results of theorem 2.2, theorem 2.3 and corollary 2.1 can be simply adapted
to the discrete case (7).

3. Stability with the discretization

This section is devoted to the analysis of the solutions of (6) and (7) with respect to the discretization process.

More precisely, we will prove that |ν − νh| = O(h
3
2 ). In order to prove this result, we will need to prove an

analogue to the theorem 1.2 for the derivative maps ν 7→ ψ′(ν) and ν 7→ ψ′′(ν).

3.1. A stability theorem

The analysis of the discretization will focus on the application of the following proposition 3.1. It is adapted
from [31, Theorem 3.1] to the case of box constraints, as it is the case in (6). Note that the second order
optimality conditions for (6) need the notion of critical cone at ν̄ ∈ [νmin, νmax], which is expressed as:

CJ′

ν̄ = {δ ∈ R|δ = λ(ν − ν̄) such that ν ∈ [νmin, νmax], λ > 0, J ′(ν̄)δ = 0}.

Note that if ν̄ ∈ (νmin, νmax) and J ′(ν̄) = 0, then CJ′

ν̄ = R. We recall the first and second order necessary
conditions of optimality.

Theorem 3.1. [8, Theorem 3.7 & 3.8] Let J : [νmin, νmax] → R be a twice differentiable function and consider
the optimization problem minν∈[νmin,νmax] J (ν). Denote ν∗ a local solution, meaning J (ν∗) ≤ J (ν) for all
ν ∈ [νmin, νmax] in a neighborhood of ν∗. Then

J ′(ν∗)(ν − ν∗) ≥ 0, ∀ν ∈ [νmin, νmax], (9)

and

J ′′(ν∗)δ2 ≥ 0, ∀δ ∈ CJ ′

ν∗ . (10)

If ν∗ ∈ [νmin, νmax] satisfies the variational inequality (9) and the second order sufficient condition

J ′′(ν∗)δ2 > 0, ∀δ ∈ CJ ′

ν∗ \{0}, (11)
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then ν∗ is a strict local optimal solution, meaning J (ν∗) < J (ν) for all ν ∈ [νmin, νmax] in a neighborhood of
ν∗.

As shown in [20, Lemma 1.12], (9) is equivalent to the existence of multipliers µ1, µ2 such that:

J ′(ν)− µ1 + µ2 = 0,

0 ≤ µ1 ⊥ ν − νmin ≥ 0,

0 ≤ µ2 ⊥ νmax − ν ≥ 0,

where 0 ≤ a ⊥ b ≥ 0 means that a ≥ 0, b ≥ 0 and ab = 0. We may now prove the proposition 3.1. This is
a variant of the perturbation theorems for differentiable mappings, but with the addition of complementarity
constraints. Note that F = J ′ satisfy (12) at the optimal solution ν of (6), since it is exactly the first order
condition of optimality of (6).

Proposition 3.1. Let F, Fh : [νmin, νmax] → R, for a given parameter h > 0, be continuous and differentiable
functions. Suppose there is ν ∈ [νmin, νmax] and multipliers µ1, µ2 ∈ R such that:

F (ν)− µ1 + µ2 = 0,

0 ≤ µ1 ⊥ ν − νmin ≥ 0,

0 ≤ µ2 ⊥ νmax − ν ≥ 0.

(12)

Suppose the following holds:

(1) The derivative F ′(ν) is positive on the critical cone, i.e. there exists γ > 0 such that

F ′(ν)δ2 ≥ γδ2, ∀δ ∈ CF
ν . (13)

(2) There exists a neighborhood of ν (denoted U(ν)) and a positive number L(h) such that, for all ν1, ν2 ∈
U(ν):

|F ′
h(ν1)− F ′

h(ν2)| ≤ L(h)|ν1 − ν2|. (14)

(3) The following limit on Fh holds

lim
h→0

L(h)|F (ν)− Fh(ν)| = 0. (15)

(4) The following limit on F ′
h holds

lim
h→0

|F ′(ν)− F ′
h(ν)| = 0. (16)

Then, given h small enough, there exist νh ∈ [νmin, νmax] in a neighborhood of ν and multipliers µh
1 , µ

h
2 ∈ R such

that:

Fh(νh)− µh
1 + µh

2 = 0,

0 ≤ µh
1 ⊥ νh − νmin ≥ 0,

0 ≤ µh
2 ⊥ νmax − νh ≥ 0.

(17)

Furthermore, F ′
h(νh) is positive on the critical cone uniformly in h, and we have the a priori error estimate:

|ν − νh| ≤
2

γ
|F (ν)− Fh(ν)|. (18)
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Proof. Remark first that if ν ∈ (νmin, νmax), then (12) boils down to F (ν) = 0, µ1 = µ2 = 0, and CF
ν = R. For

some ρ = γ
kL(h) with k ≥ 4 sufficiently large, one has:

Bρ(ν) = {τ ∈ [νmin, νmax], |ν − τ | ≤ ρ} ⊂ U(ν) ∩ (νmin, νmax).

Since the whole proof of [31, Theorem 3.1] is based on this neighborhood Bρ(ν), the proof in the case ν ∈
(νmin, νmax) is identical.

Suppose that ν = νmin (the proof is the same in the case ν = νmax). In this case, remark that necessarily,
µ2 = 0 and F (νmin) = µ1 ≥ 0. Let τ ∈ Bρ(ν). With similar arguments as the one in [31, Theorem 3.1], we show
that for all δ ∈ CF

τ , F ′
h(τ)δ

2 ≥ γ
2 δ

2. Let us prove that there exists νh ∈ Bρ(ν) verifying (17). We distinguish
two cases:

• Either F (νmin) > 0, and in this case, due to (15), for h small enough, Fh(νmin) > 0. Choose then
µh
1 = Fh(νmin), and conclude the proof by choosing νh = νmin.

• Or F (νmin) = 0. In this case, we distinguish once more two different cases:
– Either Fh(νmin) ≥ 0, and we choose µ1 = Fh(νmin), and this concludes the proof by choosing
νh = νmin.

– Or Fh(νmin) < 0. In this case, let ν̄ ∈ Bρ(νmin). Due to the mean value theorem, remark that
there exists τ ∈ Bρ(ν) such that

Fh(ν)− Fh(νmin) = F ′
h(τ)(ν − νmin) ≥

γ

2
(ν − νmin),

where we remark that ν − νmin ∈ CF
τ . Due to (15), for a given ε > 0 and for all h, both small

enough, one has Fh(νmin) ≥ −γ
2 (ν − νmin) + ε. Therefore Fh(ν) ≥ γ

2 (ν − νmin) +Fh(νmin) ≥ ε > 0.
Since Fh is continuous, using the intermediate value theorem, there exists νh ∈ Bρ(νmin) such that
Fh(νh) = 0. Since F ′

h is positive on this interval, it implies the uniqueness of νh in Bρ(νmin).

The proof of the estimate (18) is done similarly as in [31, Theorem 3.1]. □

3.2. Derivative computation and properties

Proposition 3.1 will be used with the functions F = J ′ and Fh = J ′
h. We therefore need to compute the

derivatives of J .

Proposition 3.2. Suppose (H1) holds. One proves that:

J ′(ν) =

∫
Ω

∇× ψ′(ν) · (∇× ψ(ν)− utarget),

where ψ′(ν) = dψν(1) is defined in (8), and

J ′′(ν) =

∫
Ω

∇× ψ′′(ν)(∇× ψ(ν)− utarget) + ∥∇ × ψ′(ν)∥2L2(Ω),

where ψ′′(ν) is the unique solution of the following equation: for all χ ∈ V:

νa0(ψ
′′(ν), χ) + a1(ψ

′′(ν), ψ(ν), χ) + a1(ψ(ν), ψ
′′(ν), χ)

= −2(a0(ψ
′(ν), χ) + a1(ψ

′(ν), ψ′(ν), χ)).
(19)

Proof. The proof of the existence and uniqueness of solution to (19) is similar to proposition 2.1 and is thus
omitted. The first and second derivatives of J simply come from the chain rule. We only give the details for
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the computation of the second derivative ψ′′(ν), since the calculations for the first derivative are similar and
already done in theorem 2.2. In the following, χ will simply be any element of V.

0 = lim
δ→0

δ−1(a0(ψ(ν + δ)− ψ(ν), χ) + νa0(ψ
′(ν + δ)− ψ′(ν), χ) + δa0(ψ

′(ν + δ), χ)

+ a1(ψ(ν + δ), ψ′(ν + δ), χ) + a1(ψ
′(ν + δ), ψ(ν + δ), χ))

− a1(ψ(ν), ψ
′(ν), χ)− a1(ψ

′(ν), ψ(ν), χ)))

= a0(ψ
′(ν), χ) + lim

δ→0
δ−1(a0(ψ(ν + δ)− ψ(ν), χ) + νa0(ψ

′(ν + δ)− ψ′(ν), χ)

+ a1(ψ(ν + δ), ψ′(ν + δ), χ)− a1(ψ(ν + δ), ψ′(ν), χ)

+ a1(ψ(ν + δ), ψ′(ν), χ)− a1(ψ(ν), ψ
′(ν), χ)

+ a1(ψ
′(ν + δ), ψ(ν + δ), χ)− a1(ψ

′(ν), ψ(ν + δ), χ)

+ a1(ψ
′(ν), ψ(ν + δ), χ)− a1(ψ

′(ν), ψ(ν), χ)))

= 2a0(ψ
′(ν), χ)+νa0(ψ

′′(ν), χ) + a1(ψ(ν), ψ
′′(ν), χ)

+ 2a1(ψ
′(ν), ψ′(ν), χ) + a1(ψ

′′(ν), ψ(ν), χ).

□

Similarly, one proves that:

J ′
h(ν) =

∫
Ω

∇× ψ′
h(ν) · (∇× ψh(ν)− Π̃hutarget),

J ′′
h (ν) =

∫
∇× ψ′′

h(ν)(∇× ψh(ν)− Π̃hutarget) + ∥∇ × ψ′(ν)∥2L2(Ω),

where ψ′
h(ν) and ψ

′′
h(ν) are defined as the solutions of the variational equations:

νa0(ψ
′
h(ν), χ) + a1(ψ

′
h(ν), ψh(ν),χ) + a1(ψh(ν), ψ

′
h(ν), χ) = −a0(ψh(ν), χ),

νa0(ψ
′′
h(ν), χ) + a1(ψ

′′
h(ν), ψh(ν), χ) + a1(ψh(ν), ψ

′′
h(ν), χ)

= −2(a0(ψ
′
h(ν), χ) + a1(ψ

′
h(ν), ψ

′
h(ν), χ)),

for all χ ∈ Vh.
Properties of the derivatives Given the estimate of theorem 1.2, we would like to prove the same kind

of estimates for ψ′(ν) et ψ′′(ν). This will be used in order to check that F = J ′ and Fh = J ′
h comply the

assumptions of proposition 3.1.

Proposition 3.3. Suppose (H0)-(H1) hold. Let ν ∈ [νmin, νmax] be fixed. Denote ψ(ν) ∈ V the solution of
(2). Suppose also that ψ(ν), ψ′(ν) and ψ′′(ν) are in H3(Ω). Then

|ψ′(ν)− ψ′
h(ν)|2 = O(h),

|ψ′′(ν)− ψ′′
h(ν)|2 = O(h).

Proof. Since ψh (resp. ψ′
h) appears in the weak formulation satisfied by ψ′

h (resp. ψ′′
h), the error needs to be split

in two in order to see the influence of the discretization of the equation, and the influence of the discretization
ψh of ψ (resp. ψ′

h of ψ′). Let us start with ψ′(ν). Define ψ̄′
h(ν) ∈ Vh as the solution of the equation: ∀χh ∈ Vh

νa0(ψ̄
′
h(ν), χh) + a1(ψ̄

′
h, ψ(ν), χh) + a1(ψ(ν), ψ̄

′
h, χh) = −a0(ψ(ν), χh).

Let us split the error: ψ′(ν)− ψ′
h(ν) = ψ′(ν)− ψ̄′

h(ν) + ψ̄′
h(ν)− ψ′

h(ν).
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• We first focus on δψ′ = ψ̄′
h(ν) − ψ′

h(ν). We will denote δψ = ψ(ν) − ψh(ν). We have the following
equality: ∀χh ∈ Vh

νa0(δψ
′, χh) + a1(δψ

′, ψ(ν), χh) + a1(ψ(ν), δψ
′, χh)

= −a0(δψ, χh)− a1(ψ
′
h(ν), δψ, χh)− a1(δψ, ψ

′
h(ν), χh).

We choose χh = δψ′ ∈ Vh, which gives us the estimate

(ν − Γ1|ψ(ν)|2)|δψ′|22 ≤ (2Γ1|ψ′
h(ν)|2 + 1)|δψ|2|δψ′|2.

Therefore, using the fact that |ψ(ν)|2 and |ψ′
h(ν)|2 are bounded, one proves using theorem 1.2 that:

|δψ′|2 ≲ |δψ|2 ≲ h.

• Let us now focus on ψ′(ν)− ψ̄′
h(ν). The following relation holds for all χh ∈ Vh:

L(ψ′(ν)− ψ̄′
h(ν), χh) =νa0(ψ

′(ν)− ψ̄′
h(ν), χh) + a1(ψ

′(ν)− ψ̄′
h(ν), ψ(ν), χh)

+ a1(ψ(ν), ψ
′(ν)− ψ̄′

h(ν), χh)

=0.

Therefore, for all χh ∈ Vh:

L(ψ′(ν)− ψ̄′
h(ν), ψ

′(ν)− ψ̄′
h(ν)) =L(ψ′(ν)− ψ̄′

h(ν), ψ
′(ν))

− L(ψ′(ν)− ψ̄′
h(ν), ψ̄

′
h(ν))

=L(ψ′(ν)− ψ̄′
h(ν), ψ

′(ν))

− L(ψ′(ν)− ψ̄′
h(ν), χh)

=L(ψ′(ν)− ψ̄′
h(ν), ψ

′(ν)− χh).

It implies:

(ν − Γ1|ψ(ν)|2)|ψ′(ν)− ψ̄′
h(ν)|22 ≤ (ν + 2Γ1|ψ(ν)|2)|ψ′(ν)− ψ̄′

h(ν)|2|ψ′(ν)− χh|2.

Using the same bounds on ν and |ψ|2 as before, and using theorem 1.1, one proves that:

|ψ′(ν)− ψ̄′
h(ν)|2 ≲ inf

χh∈Vh

|ψ′(ν)− χh|2 ≲ h|ψ′(ν)|3.

The proof concerning ψ′′(ν)− ψ′′
h(ν) is similar and found in the Appendix. □

Proposition 3.4. Suppose (H0)-(H1) are verified. Let ν ∈ [νmin, νmax] be fixed. Suppose also that

• ψ(ν) ∈ H3(Ω) ∩ V and ψh(ν) ∈ H3(Ω) ∩ Vh.
• ψ′(ν), ψ′′(ν) ∈ H4(Ω) ∩ V and ψ′

h(ν), ψ
′′
h(ν) ∈ H4(Ω) ∩ Vh.

Then
h

1
2 |ψ′(ν)− ψ′

h(ν)|1 + ∥ψ′(ν)− ψ′
h(ν)∥L2(Ω) = O(h2),

h
1
2 |ψ′′(ν)− ψ′′

h(ν)|1 + ∥ψ′′(ν)− ψ′′
h(ν)∥L2(Ω) = O(h2).

Proof. We remind the reader that ζ is the solution of the equation (5). Denote ζh = Πhζ and δψ = ψ(ν)−ψh(ν).
In (5), take χ = ψ′(ν)− ψ′

h(ν):

⟨g, ψ′(ν)− ψ′
h(ν)⟩ =L(ζ − ζh, ψ

′(ν)− ψ′
h(ν)) + L(ζh, ψ′(ν)− ψ′

h(ν)).
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Note that
L(ζh, ψ′(ν)− ψ′

h(ν)) = −(a0(δψ, ζh) + a1(ψ
′
h(ν), δψ, ζh) + a1(δψ, ψ

′
h(ν), ζh)).

Therefore,
⟨g, ψ′(ν)− ψ′

h(ν)⟩ =L(ζ − ζh, ψ
′(ν)− ψ′

h(ν)) + a0(δψ, ζ − ζh)

+ a1(ψ
′
h(ν), δψ, ζ − ζh) + a1(δψ, ψ

′
h(ν), ζ − ζh)

− (a0(δψ, ζ) + a1(ψ
′
h(ν), δψ, ζ) + a1(δψ, ψ

′
h(ν), ζ)).

Using integration by parts and Sobolev inclusions, one shows that:

a0(δψ, ζ) =

∫
Ω

δψ∆2ζ ≲ ∥δψ∥L2(Ω)|ζ|4,

a1(ψ
′
h(ν), δψ, ζ) =−

∫
Ω

∆ψ′
h(ν)∇× ζ · ∇δψ

=

∫
Ω

∇ · (∆ψ′
h(ν)∇× ζ)δψ

≤∥δψ∥L2(Ω)∥ζ∥W 2,4(Ω)∥ψ′
h(ν)∥W 3,4(Ω)

≲∥δψ∥L2(Ω)|ζ|3|ψ′
h(ν)|4,

a1(δψ, ψ
′
h(ν), ζ) =

∫
Ω

δψ∆([ψ′
h(ν), ζ])

≤∥δψ∥L2(Ω)∥ζ∥W 3,4(Ω)∥ψ′
h(ν)∥W 3,4(Ω)

≲∥δψ∥L2(Ω)|ζ|4|ψ′
h(ν)|4.

Using the hypothesis |ζ|4 ≲ ∥g∥L2(Ω), we get:

⟨g, ψ′(ν)− ψ′
h(ν)⟩ ≲(ν + 2Γ1|ψ(ν)|2)|ζ − ζh|2|ψ′(ν)− ψ′

h(ν)|2
+ (1 + 2Γ1|ψ′

h(ν)|2)|ζ − ζh|2|ψ(ν)− ψh(ν)|2
+ (1 + 2|ψ′

h(ν)|4)∥δψ∥L2(Ω)∥g∥L2(Ω).

Using the interpolation error between ζ and ζh (see theorem 1.1) and the estimate on |ψ(ν) − ψh(ν)|2 and
|ψ′(ν)− ψ′

h(ν)|2 (see theorem 1.2 and proposition 3.3), we have:

⟨g, ψ′(ν)− ψ′
h(ν)⟩ ≲h2|ζ|4 + h2|ζ|4 + h2∥g∥L2(Ω)

≲h2∥g∥L2(Ω).

We choose now g = ∆(ψ′(ν)− ψ′
h(ν)), we get:

|ψ′(ν)− ψ′
h(ν)|21 = ⟨g, ψ′(ν)− ψ′

h(ν)⟩ ≲ h2|ψ′(ν)− ψ′
h(ν)|2 ≲ h3.

This implies:

|ψ′(ν)− ψ′
h(ν)|1 ≲ h

3
2 .

Choosing now g = ψ′(ν)− ψ′
h(ν), we prove straight away that:

∥ψ′(ν)− ψ′
h(ν)∥L2(Ω) ≲ h2.

The proof for ψ′′(ν)− ψ′′
h(ν) is similar and done in the Appendix. □

Remark 3.1. As for remark 1.1 concerning (H0), the assumptions ψ′ and ψ′′ in H4(Ω) will hold if Ω is a
polygon with maximum interior vertex angle lower than 126° and g = −∆2ψ(ν) ∈ L2(Ω).
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We may now prove the order of convergence for the parameter identification problem. Note that we suppose
that the solution is stable (in the terminology of [31]), meaning that the sufficient condition of optimality (13)
is verified with F = J ′. We first need the following lemma in order to prove the lipschitz condition (14).

Lemma 3.1. Assume (H0). Let ν ∈ [νmin, νmax] and let δ ∈ R be such that ν + δ ∈ [νmin, νmax]. Then one has
the estimate |ψ′′(ν)− ψ′′(ν + δ)|2 ≲ |δ|.
Proof. First, note that one can easily prove that, for all µ ∈ [νmin, νmax], |ψ′′(µ)|2 ≤ C for some C > 0. The
proof simply consists in choosing χ = ψ′′(µ) in (19).

We will denote ψ = ψ(ν), ψδ = ψ(ν + δ) (the same definition holds for ψ′ and ψ′′). The function ψ′′ − ψ′′
δ

solves the equation: for all χ ∈ V:

νa0(ψ
′′ − ψ′′

δ , χ) + a1(ψ
′′ − ψ′′

δ , ψ, χ) + a1(ψ,ψ
′′ − ψ′′

δ , χ)

=δa0(ψ
′′
δ , χ)− a1(ψ

′′
δ , ψ − ψδ, χ)− a1(ψ − ψδ, ψ

′′
δ , χ)

− 2(a0(ψ
′ − ψ′

δ, χ) + a1(ψ
′ − ψ′

δ, ψ
′, χ) + a1(ψ

′
δ, ψ

′ − ψ′
δ, χ)).

We choose χ = ψ′′ − ψ′′
δ :

(νmin − Γ1ν
−1
min∥f∥L2(Ω))|ψ′′ − ψ′′

δ |22 ≤[δ|ψ′′
δ |2 + 2Γ1|ψ′′

δ |2|ψ − ψδ|2
+ 2(1 + Γ1(|ψ′|2 + |ψ′

δ|2))
|ψ′ − ψ′

δ|2]|ψ′′ − ψ′′
δ |2.

Using theorem 2.2, this implies that |ψ′′ − ψ′′
δ |2 ≲ |δ|. □

Theorem 3.2. Suppose (H0)-(H2) are verified, that the solution ν of (6) is stable, and that

• ψ(ν) ∈ H3(Ω) ∩ V and ψh(ν) ∈ H3(Ω) ∩ Vh.
• ψ′(ν), ψ′′(ν) ∈ H4(Ω) ∩ V and ψ′

h(ν), ψ
′′
h(ν) ∈ H4(Ω) ∩ Vh.

Suppose also that ∥utarget− Π̃hutarget∥L2(Ω) = O(h
3
2 ). Denote νh the solution of (7). Then one has the estimate

|ν − νh| = O(h
3
2 ).

Proof. For some µ ∈ [νmin, νmax], we will denote δψ(µ) = ψ(µ) − ψh(µ), δψ
′(µ) = ψ′(µ) − ψ′

h(µ), δψ
′′(µ) =

ψ′′(µ) − ψ′′
h(µ). The proof consists only in the application of proposition 3.1, where we use F = J ′, Fh = J ′

h.
Condition (14) is proved using lemma 3.1. Note that, as proved in proposition 3.2 and in proposition 3.4:

|J ′(µ)− J ′
h(µ)| =|⟨∇ × δψ′(µ),∇× ψ(µ)− utarget⟩+ ⟨∇ × ψ′

h(µ),∇× δψ(µ)⟩

− ⟨∇ × ψ′
h(µ),utarget − Π̃hutarget⟩|

≤|δψ′(µ)|1∥∇ × ψ(µ)− utarget∥L2(Ω) + |ψ′
h(µ)|1|δψ(µ)|1

+ |ψ′
h(µ)|1∥utarget − Π̃hutarget∥L2(Ω)

≲h
3
2 .

|J ′′(µ)− J ′′
h (µ)| =|⟨∇ × δψ′′(µ),∇× ψ(µ)− utarget⟩+ ⟨∇ × ψ′′

h(µ),∇× δψ(µ)⟩

− ⟨∇ × ψ′′
h(µ),utarget − Π̃hutarget⟩|

+ |⟨∇ × δψ′(µ),∇× ψ′(µ)⟩+ ⟨∇ × ψ′
h(µ),∇× δψ′(µ)⟩|

≤|δψ′′(µ)|1∥∇ × ψ(µ)− utarget∥L2(Ω) + |ψ′′
h(µ)|1|δψ(µ)|1

+ |ψ′′
h(µ)|1∥utarget − Π̃hutarget∥L2(Ω)

+ |δψ′(µ)|1|ψ′(µ) + ψ′
h(µ)|1

≲h
3
2 .
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Figure 1. Error under mesh refinement for viscosity identification – smooth case

Therefore, conditions (15) and (16) are verified, and the proof is concluded using (18). □

Remark 3.2. The assumption ∥utarget−Π̃hutarget∥L2(Ω) = O(h
3
2 ) is reasonable, in view of theorem 1.1. Suppose

that there exists ψtarget ∈ H3(Ω) ∩ V such that utarget = ∇× ψtarget, which is equivalent to the assumption that

∇ · utarget = 0. In this case, ∥utarget − Π̃hutarget∥L2(Ω) = |ψtarget −Πhψtarget|1 = O(h2).

4. Numerical examples

We now show two numerical experiments in order to test the conclusion of theorem 3.2.

4.1. Smooth example

We solve the optimization problem (6) using fixed point iterations in order to solve the weak formulation (2)
on the following data: Ω = (0, 1)2, utarget = ∇× ψtarget where ψtarget(x, y) = x2(1− x)2y2(1− y)2. The source
term f is defined through the strong formulation f = −ν∗∆2ψtarget + [∆ψtarget, ψtarget], where ν

∗ = 1
100 . Thus,

an optimal solution of (6) is ν∗ with optimal cost 0.
As shown in fig. 1, we retrieve a convergence of order 2, which is better than expected in theorem 3.2. This

could be explained by the convergence of the discrete stream solution, which is better than the one expected in
theorem 1.2 as shown in fig. 2. One can see how the convergence of the discrete stream solution influences the
convergence of νh in the proof of theorem 3.2. Overall, the error is bounded by |ψ(ν)−ψh(ν)|1 (or the norm of

the derivative). Thus, if |ψ(ν)− ψh(ν)|1 actually converges at a faster rate than the expected h
3
2 as h→ 0, νh

will also converge faster. In our framework, it seems that the stream function converges at order 2 with respect
to h, which was also observed in further numerical experiments in [14, section 4.3.1].

4.2. H4 example

In order to see if the enhanced convergence does not come from the extra regularity of the previous example,
we build a new example with the lower regularity. We therefore test numerically the conclusion of theorem 3.2
with an H4(Ω) target example. On the same domain Ω = (0, 1)2, we define utarget = ∇ × ψtarget with
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5.10−3 10−2 5.10−2 10−1

10−6

10−5

10−4

h

Ch2

|ψh(ν
∗)− ψtarget|1

Figure 2. Order 2 convergence of ψh(ν
∗) towards ψtarget with respect to h in H1 semi-norm

– smooth case.

ψtarget(x, y) = 100P(x)P(y), where

P(x) =

{
x(x4 − 17

8 x
3 + 17

8 x
2 − 7

8x) if x < 0.5

(1− x)(x4 − 7
8x

3 − 1
8x) otherwise.

One can check that P(x) ∈ H4([0, 1]) but not in H5([0, 1]), and we can also check that P is defined such that
ψtarget ∈ V. The source term f is once again defined through the strong formulation f = −ν∗∆2ψtarget +
[∆ψtarget, ψtarget], where ν

∗ = 1
100 .

10−2 5.10−2

10−4

10−3

10−2

h

Ch2

|ν−ν∗|
ν∗

Figure 3. Error under mesh refinement for viscosity identification - H4 case



TITLE WILL BE SET BY THE PUBLISHER 17

As shown in fig. 3, we find once again an order 2 convergence, proving numerically that this enhanced order
of convergence is not due to the regularity of the target function. As it is suggested by fig. 2, this enhanced
convergence on ν is probably due to the enhanced convergence on |ψ − ψh|1 that has not been explained yet.

5. Conclusion

We have analyzed the discretization of the viscosity identification problem in the Navier-Stokes equations. We
have used the stream formulation of the Navier-Stokes equations and discretized it with Hsieh-Clough-Tocher
finite elements. In this framework, we proved that the solution of the discretized problem νh converges to the
solution of the continuous problem ν with order 3/2. In numerical experiments, we proved that this order of
convergence may actually be enhanced, and discussed of how it is linked with an enhanced order of convergence
of the discrete solution. This is a topic for future research.

Appendix A. Proof of convergence for ψ′′
h(ν)

Proof of proposition 3.3 for ψ′′(ν) Define ψ̄′′
h(ν) ∈ Vh as the solution of:

νa0(ψ̄
′′
h(ν), χ) + a1(ψ̄

′′
h(ν), ψ(ν), χ) + a1(ψ(ν), ψ̄

′′
h(ν), χ)

= −2(a0(ψ
′(ν), χ) + a1(ψ

′(ν), ψ′(ν), χ)), ∀χh ∈ Vh.

We decompose the error: ψ′′(ν)− ψ′′
h(ν) = ψ′′(ν)− ψ̄′′

h(ν) + ψ̄′′
h(ν)− ψ′′

h(ν).

• Let us focus first on δψ′′ = ψ̄′′
h(ν)−ψ′′

h(ν). Denote δψ = ψ(ν)−ψh(ν) et δψ
′ = ψ′(ν)−ψ′

h(ν). We have
the following relation: ∀χh ∈ Vh

νa0(δψ
′′, χh) + a1(δψ

′′, ψ(ν), χh) + a1(ψh(ν), δψ
′′, χh) =

− 2a0(δψ
′, χh)− 2a1(δψ

′, ψ′(ν), χh)− 2a1(ψ
′
h(ν), δψ

′, χh)

− a1(ψ
′′
h(ν), δψ, χh)− a1(δψ, ψ̄

′′
h(ν), χh).

Define χh = δψ′′, we now get the following estimate:

(νmin − Γ1|ψ(ν)|2)|δψ′′|22 ≤2(1 + Γ1|ψ′(ν)|2 + Γ1|ψ′
h(ν)|2)|δψ′|2|δψ′′|2

+ 2Γ1|ψ′′
h(ν)|2|δψ|2|δψ′′|2.

Using now the results on |δψ|2 and |δψ′|2, one shows that

|δψ′′|2 ≲ |δψ|2 + |δψ′|2 ≲ h.

• We now focus on ψ′′(ν)− ψ̄′′
h(ν). We have the following equality: ∀χh ∈ Vh

L(ψ′′(ν)− ψ̄′′
h(ν), χh) =νa0(ψ

′′(ν)− ψ̄′′
h(ν), χh)

+ a1(ψ
′′(ν)− ψ̄′′

h(ν), ψ(ν), χh)

+ a1(ψ(ν), ψ
′′(ν)− ψ̄′′

h(ν), χh)

=0.

Thus, for all χh ∈ Vh:

L(ψ′′(ν)− ψ̄′′
h(ν), ψ

′′(ν)− ψ̄′′
h(ν)) = L(ψ′′(ν)− ψ̄′′

h(ν), ψ
′′(ν)− χh).
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This relation implies that:

(νmin − Γ1|ψ(ν)|2)|ψ′′(ν)− ψ̄′′
h(ν)|22 ≤(ν + 2Γ1|ψ(ν)|2)

|ψ′′(ν)− ψ̄′′
h(ν)|2|ψ′′(ν)− χh|2.

Using the bounds on ν and |ψ|2, and using theorem 1.1, one proves that:

|ψ′′(ν)− ψ̄′′
h(ν)|2 ≲ inf

χh∈Vh

|ψ′′(ν)− χh|2 ≲ h|ψ′′(ν)|3.

Proof of proposition 3.4 for ψ′′(ν) Denote δψ′ = ψ′(ν)− ψ′
h(ν). Choosing χ = ψ′′(ν)− ψ′′

h(ν) in (5):

⟨g, ψ′′(ν)− ψ′′
h(ν)⟩ =L(ζ − ζh, ψ

′′(ν)− ψ′′
h(ν)) + L(ζh, ψ′′(ν)− ψ′′

h(ν)).

However, we can prove that

L(ζh, ψ′′(ν)− ψ′′
h(ν)) =− 2(a0(δψ

′, ζh) + a1(ψ
′
h(ν), δψ

′, ζh) + a1(δψ
′, ψ′(ν), ζh))

− (a1(δψ, ψ
′′(ν), ζh) + a1(ψ

′′
h, δψ, ζh)).

Therefore, we have the following equality:

⟨g, ψ′′(ν)− ψ′′
h(ν)⟩ =L(ζ − ζh, ψ

′′(ν)− ψ′′
h(ν))

+ 2(a0(δψ
′, ζ − ζh) + a1(ψ

′
h(ν), δψ

′, ζ − ζh)

+ a1(δψ
′, ψ′(ν), ζ − ζh))

+ a1(δψ, ψ
′′(ν), ζ − ζh) + a1(ψ

′′
h, δψ, ζ − ζh)

− 2(a0(δψ
′, ζ) + a1(ψ

′
h(ν), δψ

′, ζ) + a1(δψ
′, ψ′(ν), ζ))

− (a1(δψ, ψ
′′(ν), ζ) + a1(ψ

′′
h(ν), δψ, ζ)).

Using integration by parts and Sobolev inclusions, one shows that:

a0(δψ
′, ζ) ≲ ∥δψ′∥L2(Ω)|ζ|4,

a1(ψ
′
h(ν), δψ

′, ζ) ≤∥δψ′∥L2(Ω)∥ζ∥W 2,4(Ω)∥ψ′
h(ν)∥W 3,4(Ω)

≲∥δψ′∥L2(Ω)|ζ|3|ψ′
h(ν)|4,

a1(ψ
′′
h(ν), δψ, ζ) ≲∥δψ∥L2(Ω)|ζ|3|ψ′′

h(ν)|4
a1(δψ

′, ψ′(ν), ζ) ≤∥δψ′∥L2(Ω)∥ζ∥W 3,4(Ω)∥ψ′(ν)∥W 3,4(Ω)

≲∥δψ′∥L2(Ω)|ζ|4|ψ′(ν)|4,
a1(δψ, ψ

′′(ν), ζ) ≲∥δψ∥L2(Ω)|ζ|4|ψ′′(ν)|4.
Using the hypothesis |ζ|4 ≲ ∥g∥L2(Ω), we get:

⟨g, ψ′′(ν)− ψ′′
h(ν)⟩ ≲(ν + 2Γ1|ψ(ν)|2)|ζ − ζh|2|ψ′′(ν)− ψ′′

h(ν)|2
+ 2(1 + Γ1(|ψ′

h(ν)|2 + |ψ′(ν)|2))|ζ − ζh|2|δψ′|2
+ Γ1(|ψ′′

h(ν)|2 + |ψ′′(ν)|2)|ζ − ζh|2|δψ|2
+ (1 + |ψ′(ν)|4 + |ψ′

h(ν)|4)∥δψ′∥L2(Ω)∥g∥L2(Ω)

+ (|ψ′′(ν)|4 + |ψ′′
h(ν)|4)∥δψ∥L2(Ω)∥g∥L2(Ω).
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Using the interpolation error between ζ and ζh (see theorem 1.1) and the error on |δψ|2, |δψ′|2 and |ψ′′(ν)−
ψ′′
h(ν)|2, we get:

⟨g, ψ′′(ν)− ψ′′
h(ν)⟩ ≲h2∥g∥L2(Ω).

Choosing now g = ∆(ψ′′(ν)− ψ′′
h(ν)), we get:

|ψ′′(ν)− ψ′′
h(ν)|21 = ⟨g, ψ′′(ν)− ψ′′

h(ν)⟩ ≲ h2|ψ′′(ν)− ψ′′
h(ν)|2 ≲ h3,

which proves that |ψ′′(ν)−ψ′′
h(ν)|1 ≲ h

3
2 . Choosing now g = ψ′′(ν)−ψ′′

h(ν), we have that ∥ψ′′(ν)−ψ′′
h(ν)∥L2(Ω) ≲

h2.

The author would like to thank Didier Auroux for his idea of testing the influence of the regularity of the target on the
order of convergence, Hervé Guillard for providing his code implementing HCT elements, and Florence Marcotte for the
proofreading and the discussion.
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