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PARAMETERS IDENTIFICATION IN 2D REDUCED MHD EQUATIONS USING

PARTIAL FOURIER MODES OBSERVATIONS. ∗

Alexandre Vieira1

Abstract. We are interested in the problem of identifying the viscosity and resistivity in a 2D MHD
equations based on observations of low Fourier modes only. In this regard, we analyse a system identi-
fication method called nudging in the case where these parameters are only approximately known. The
inverse problem of identifying these parameters given partial observations is posed as an optimization
problem, and we prove uniqueness of the solution and a lipschitz property. Eventually, we derive a
numerical method in order to retrieve the viscosity and resistivity that we test numerically.
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1. Introduction

It is usual for many physical systems to be modeled with differential equations using different parameters
; for instance viscosity, thermal resistivity, or diffusivity. A precise value of these parameters, along with a
precise knowledge of the state of the physical system at some initial time, are necessary in order to produce
accurate or practical simulations of these systems. However, these values are often unknown, or not precisely.
This is the case for instance for some systems dealing with nuclear fusion, which are sometimes described using
a magnetohydrodynamic (MHD) model. In this model, two scalar parameters appear ; namely, the kinematic
fluid viscosity and the magnetic diffusivity. In practical framework, these values need to be adjusted to the
observations we have at hand. This is where the techniques of data assimilation become useful.

The data assimilation techniques are a family of techniques developed in order to include information from, for
instance, measurements or observations, into simulations in order to increase their accuracy. These techniques
are often based on the Kalman filter, which is a linear quadratic estimator with Gaussian measurement noise.
The main idea is to design a stochastic time-varying linear model for the dynamic and the observations with some
additional noise that has a centered Gaussian distribution with unknown standard deviation. The goal is then to
infer the true dynamic and the additional noise based on the polluted observations. One of its drawback is that
the addition of the Gaussian noise is often not enough to compensate the unmodeled dynamics. Nonetheless,
these techniques were applied and extended for different problems, including for nonlinearity, leading to powerful
smoothing (Kalman-Bucy smoothers, MCMC, ...) or filtering algorithms (3DVAR, Extended and Ensemble
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1 Université Côte d’Azur, INRIA, CNRS, LJAD, Nice, France (e-mail: alexandre.vieira@univ-cotedazur.fr)

© EDP Sciences, SMAI 1999



2 TITLE WILL BE SET BY THE PUBLISHER

Kalman Filters, ...). For more on Kalman Filters, see [21, 23]. We also mention the paper by Blömker et
al. [7] who applied the 3DVAR algorithm to the Navier-Stokes equations, and [1] for an iterative scheme for a
parameter and initial condition identification related to these methods.

In the last decade, a technique designed by Azouani, Olson, and Titi [3] proposes a new approach to data
assimilation (in the context of the nonlinear Navier-Stokes equations), usually called in the literature the AOT
algorithm or Continuous Data Assimilation (CDA). Their idea is based on results in the control theory com-
munity, and has several links with state observers such as Luenberger observers or the backstepping methods ;
see [30, Chapter 7] and [22]. The main ingredient of the AOT algorithm is the observation feedback penaliza-
tion, which adds an extra source term, function of the gap between the simulated model and the observation.
This penalization term forces the simulated system to converge exponentially in time to the observed variables.
This method also has the advantages of possibly exploiting only sparse observations of the state variables, and
can be used online for real-time assimilation. The work by Azouani, Olson, and Titi focused on observations
obtained noise-free and continuously in time, but these two drawbacks have since been overcomed [4, 17]. This
approach has been successfully used for other models than the Navier–Stokes equations, such as the 2D Bénard
convection equations [2] or the 2D MHD equations [6, 19]. A flaw of this method is that only the initial state
condition is unknown, but all other parameters are supposed to be exactly known. The interested reader will
find more details in [12,14,20,26,27], among others.

More recently, the AOT algorithm have been extended to identify unknown parameters. Carlson et al.
in [10] prove that the AOT algorithm applied to the Navier–Stokes equations is stable with respect to a change
of viscosity parameter, and proposes two algorithms to dynamically recover the true viscosity that produced the
observations. This approach has then been proved to converge in [5, 25]. This approach has also been applied
to chaotic ODEs, see [11].

Our goal in this paper is to adapt the results of [5] to the 2D MHD equations in order to identify the
kinematic fluid viscosity and the magnetic diffusivity. This problem has for instance practical interests for the
simulation of a fusion nuclear reaction in a tokamak [34], where only partial sparse data can be observed inside
the chamber.

This paper is organized as follows. In section 2, we recall some background results concerning the AOT
algorithm and the MHD equations. In section 3, we define the determining map and prove some estimates
on this map in term of source terms. These estimates are then used in section 4, where we analyse the
parameter identification inverse problem, posed as an optimization problem. Finally, in section 5, we prove
the convergence of an iterative scheme in order to recover the unknown parameters and expose some numerical
experiments illustrating the results. For ease of presentation of these results, the longest proofs are gathered in
the appendix A.

Notations For some domain Ω ⊂ R2, we denote | · | the norm on L2(Ω), ∥ · ∥ the norm on H1(Ω). For some
normed space X, we denote its norm ∥ · ∥X, and Cb(X) the set of continuous bounded mappings from R to X. It
is a normed space with norm ∥ϕ∥Cb(X) = supt∈R ∥ϕ(t)∥X.

2. Preliminaries

Background on Data Assimilation We expose the main ideas we are going to use for the 2D MHD
equations. The idea of Azouani, Olson and Titi in [3] is based on a feedback control built on the observations.
Suppose we study a dynamical system of the form d

dtY = F (Y ) subject to an initial condition Y (0) = Y0 which

is unknown. Since the solution t 7→ Y (t) depends continuously on its initial condition, an approximation Ỹ0 of

Y0 based on observations ensures that the solution t 7→ Ỹ (t) such that Ỹ (0) = Ỹ0 stays close to Y . However, this

approach produces an approximation Ỹ which may be valid only for a short amount of time ; asymptotically
in time, the error between Ỹ and Y may grow dramatically. Also, it should be noted that measurements are
often sparse or noisy, so a good approximation of Y0 can be hardly guaranteed.

Instead of trying to approximate the initial condition, we will continuously feed back into the equations the
observations we have, and which are supposed to be given continuously. This way, the approximation could be
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wrong at the beginning, but will become better as time goes on. In the article of Azouani et al., we suppose we
are given an interpolant operator Ih of the (sparse) data with parameter h (which can be seen as the mesh size
for instance). Given that the true value of the (partial) observation of Y at time t is Ih(Y (t)), we approximate

Y by finding Ỹ , solution of the equation:

d

dt
Ỹ = F (Ỹ ) + µ(Ih(Y )− Ih(Ỹ )). (1)

Here, µ is a tuning parameter which will have to be chosen big enough so that the identification process
converges. In the present work, we will suppose that Ih = PN , the Fourier modal projection operator, which is
defined as:

F(PNϕ)(k) =

{
F(ϕ)(k) if |k| < N,

0 otherwise,
∀k ∈ Z2,

where F(·) denotes the Fourier transform. The parameter N is seen as the inverse of h : N = h−1. One easily
proves that PN has the following property:

∀u ∈ H1, |u− PN (u)| ≤ cP
N
∥u∥, (2)

for some cP > 0. Many other interpolation operators respect this condition, such as finite volume element or
nodal interpolation ; see for instance [3, 18,24].

2D MHD equations We are interested in the reduced MHD equations, reading:

∂tu− Re−1∆u+ (u · ∇)u− (b · ∇)b+∇p = f̃ in Ω,

∂tb− Rm−1∆b+ (u · ∇)b− (b · ∇)u = g̃ in Ω,

∇ · u = ∇ · b = 0,

u(0), b(0) given.

(3)

where f, g ∈ L2(Ω) are a given source terms, ∇· denote the divergence, u is the velocity vector field, b
the magnetic field, p the pressure, Re the unknown fluid Reynolds number, and Rm the unknown magnetic
Reynolds number. All variables and parameters are non-dimensionalized. For ease of presentation, we choose
Ω = T = R2/Z2, the 2 dimensional torus, which is an open, bounded and connected domain. The subsequent
results can be generalized to more general domains in 2 dimensions, as long as we keep the periodical boundary
conditions.

We assume, without loss of generality, that Re < Rm, and denote the Elsässer variables [13] by v = u + b
and w = u − b (if Re ≥ Rm then we would denote w = b − u and proceed similarly). The equations verified
by v and w then becomes:

∂tv − α∆v − β∆w + (w · ∇)v +∇p = f in Ω,

∂tw − α∆w − β∆v + (v · ∇)w +∇p = g in Ω,

∇ · v = ∇ ·w = 0,

v(0) = u(0) + b(0), w(0) = u(0)− b(0).

(4)

where f = f̃ + g̃, g = f̃ − g̃, α = 1
2 (Re

−1 +Rm−1) and β = 1
2 (Re

−1−Rm−1). It will be important to note that,

due to our assumptions, α− β = Rm−1 > 0 and that α > 0 and β ≥ 0.
As is customary, we define the space V := {u ∈ C∞(R2/Z2;R2) | ∇ · u = 0,

∫
Ω
u = 0} and, subsequently,

the spaces H := V in L2(Ω;R2) and V := V in H1(Ω;R2). H and V are Hilbert spaces with the inner product
defined as

⟨u,v⟩ =
∫
Ω

u · v, ⟨⟨u,v⟩⟩ =
2∑

i,j=1

∫
Ω

∂ui
∂xj

∂vi
∂xj

,
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with corresponding norms |u| =
√
⟨u,u⟩ and ∥u∥ =

√
⟨⟨u,u⟩⟩. We denote the Leray projection Pσ : L2(Ω)→ H

defined by Pσu = u−∇∆−1(∇·u) (see [8]). Pσ is the orthogonal projection of a vector field onto its divergence-
free part. We will apply the Leray operator to (4). We define the Stokes operator A and the bilinear term
B : V × V → V ∗ as the continuous extensions of the operators A and B defined on V × V as

Au = −Pσ(∆u) and B(u,v) = Pσ((u · ∇)v),

and we define the domain of A to be D(A) = {u ∈ V : Au ∈ H}. In order to simplify the notations, we will
suppose that ∇ · f = ∇ · g = 0 ; if not, replace in subsequent equations f and g and Pσ(f) and Pσ(g). Thus,
once Pσ is applied to (4), it becomes:

∂tv + αAv + βAw + B(w,v) = f in Ω,

∂tw + αAw + βAv + B(v,w) = g in Ω,

v(0) = u(0) + b(0), w(0) = u(0)− b(0).

(5)

The operator A is an unbounded self-adjoint positive operator on H [31, chapter 2]. As stated in [33], the
norm |Au| on D(A) is equivalent to the norm induced by (H2(Ω))2. The spectrum of A consists in an infinite
countable sequence of eigenvalues with lowest eigenvalue λ1 = cP = 4π2 in the case where Ω = T. The natural
extension of the operator A to V defines an isomorphism onto its dual V ′, and the following holds:

⟨⟨u,v⟩⟩ =
2∑

i,j=1

∫
Ω

∂xj
ui∂xj

vi = ⟨Au,v⟩, ∀u,v ∈ V.

It also implies:

∥v∥ ≥ λ
1
2
1 |v|, ∀v ∈ V,

|Av| ≥ λ
1
2
1 ∥v∥, ∀v ∈ D(A),

The bilinear operator B has several properties that we recall here. Proof of these results can be found in [32].
First of all, B has the following property:

⟨B(u,v),w⟩ = −⟨B(u,w),v⟩, ∀u,v,w ∈ V (6)

This implies in particular that:
⟨B(u,v),v⟩ = 0, ∀u,v ∈ V (7)

Moreover, we have the following bounds:

⟨B(u,v),w⟩ ≤ cB2 |u|
1
2 ∥u∥ 1

2 ∥v∥|w| 12 ∥w∥ 1
2 , u,v,w ∈ V, (8)

⟨B(u,v),w⟩ ≤ cB5 |u|
1
2 ∥u∥ 1

2 ∥v∥ 1
2 |Av| 12 |w|, u ∈ V,v ∈ D(A),w ∈ H. (9)

Attractor of the MHD equations A well known fact about the solutions (v,w) of (4) is their boundedness.
More precisely, as it is shown in [29, Theorems 3.1 and 3.2], for any T > 0:

• If f, g ∈ L2(0, T ;V ′) and v(0),w(0) ∈ H, then v,w ∈ L2(0, T ;V ) ∩ C(0, T ;H),
• If f, g ∈ L2(0, T ;H) and v(0),w(0) ∈ V , then v,w ∈ L2(0, T ;D(A)) ∩ L∞(0, T ;V ).

Furthermore, if one supposes:

ess sup
[0,∞)

max{|f ′|, |g′|} <∞ and v(0),w(0) ∈ H,

then v,w ∈ L∞((0,∞);D(A)) ; see [29, Theorem 4.1].
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These boundedness properties are related to the notion of absorbing set and attractors. A bounded set
B ⊂ H is called absorbing with respect to the semi-group {S(t)}t≥0 if, for any bounded subset B ⊂ H, there
exists a time T = T (B) such that S(t)B ⊂ B for all t ≥ T . The smallest absorbing set is called the global
attractor, and is defined as follows:

Definition 2.1. [28] Let B ⊂ H be a bounded absorbing set with respect to the semi-group {S(t)}t≥0. Then
the global attractor A exists as given by any of the equivalent definitions:

(1) A =
⋂
t≥0 S(T )B.

(2) A is the biggest compact subset of H which is invariant under the action of {S(t)}, i.e. for all t ≥ 0,
S(t)A = A.

(3) A is the smallest set that attracts all bounded sets.

The global attractor lets us also define the semi-group {S(t)} for all t ∈ R. As proved in [28, Theorem 10.6],
if the semi-group is injective on A, i.e.:

For some t > 0, S(t)u0 = S(t)v0 ∈ A =⇒ u0 = v0,

then every trajectory on A is defined for all t ∈ R, and S(t)A = A for all t ∈ R. Thus if the injective semi-group
{S(t)} is bounded on some time-interval, the semi-group is defined and bounded for all t ∈ R.

Concerning the solution of (4), one can prove that its semi-group of solution is injective ; the proof is similar
to the proof for the Navier-Stokes equations, see [28, Theorems 11.10, 12.8 and Corollary 12.9] and is partly
discussed in [29, Section 4.2 and 5]. Thus, under some hypothesis on the data, one has v,w ∈ Cb(H) or
v,w ∈ Cb(H) ∩ L∞(R;V ). For ease of presentation, we will denote Cb(V ) = Cb(H) ∩ L∞(R;V ).

Data assimilation system We now build a data assimilation system based on the idea exposed in (1). In
this case, we also take into account that we only have an approximate idea of the value of the fluid and magnetic
viscosities. Suppose we observe the functions ϕv, ϕw ∈ Cb(V ). Thus, we approximate the fields ϕv and ϕw with
the solutions ṽ and w̃ of:

∂tṽ + α̃Aṽ + β̃Aw̃ + B(w̃, ṽ) = f + µPσ(ϕ
v − PN (ṽ)),

∂tw̃ + α̃Aw̃ + β̃Aṽ + B(ṽ, w̃) = g + µPσ(ϕ
w − PN (w̃)),

ṽ(0) = w̃(0) = 0,

(10)

where α̃, β̃ are approximations of α and β. A priori estimate on the solution, existence and uniqueness of strong
solutions to (10) will be the topic of section 3.

Other inequalities We now recall some inequalities which will be used throughout the proofs.

• Young’s inequality : for any p > 0, q > 0 such that 1
p +

1
q = 1 and all a ≥ 0, b ≥ 0, κ > 0

ab ≤ ap

κpp
+
κqbq

q
. (11)

• The continuous inclusion of H1(Ω) into L4(Ω), as proved by Ladyzhenskaya: there exists cL > 0 such
that, for all u ∈ H1(Ω), |u|2L4(Ω) ≤ cL|u|∥u∥

3. Determining map

We now define the map of viscosities and partial observations to the solution of (10). This map has been
first defined in [15,16] using only the observations, and has been extended in [5] to incorporate the viscosity in
the Navier-Stokes equation.

Definition 3.1. Fix an arbitrary radius R > 0 for a ball BR(0) ⊂ Cb(V ). The determining map W : (R>0)
2 ×

(BR(0))
2 → (Cb(V ))2, is the mapping of viscosity, resistivity and data to the corresponding strong solution of

(10) on the attractor.
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As an example, W(α∗, β∗, PNv, PNw) returns the solution (ṽ, w̃) of (10) using (α̃, β̃) = (α∗, β∗) and
(ϕv, ϕw) = (PNv, PNw). We will prove that, under some sufficient conditions on N and µ, W is a well-
defined lipschitz continuous operator. But first, we derive an a priori estimate in H and in L2(t − τ, t;V ) on
the solution of (10). The proof of this result has been moved to appendix A.

Lemma 3.1. Fix νmin > 0 and suppose that:

α̃− β̃ > νmin, µ ≥
νminN

2

c2P
.

For any f, g, ϕv, ϕw ∈ Cb(V ), and for any N ≥ 1, if (ṽ, w̃) ∈ Cb(H) are strong solutions of (10), then the
following bounds are satisfied:

∥ṽ∥2Cb(H) + ∥w̃∥
2
Cb(H) ≤

(
2c2P
νmin

)2

(∥f∥2Cb(H) + ∥g∥
2
Cb(H))

+ 2

(
µc2P
νmin

)2

(∥ϕv∥2Cb(H) + ∥ϕ
w∥2Cb(H))

=(MH(ϕv, ϕw))2,

(12)

and for all t ∈ R and all τ > 0:∫ t

t−τ
(∥ṽ(s)∥2 + ∥w̃(s)∥2)ds ≤

(
8c2P

9ν2minN
2
τ +

8c4P
3ν3minN

4

)
(∥f∥2Cb(H) + ∥g∥

2
Cb(H))

+

(
32µ2c2P
3ν2minN

2
τ +

4µ2c4P
3ν3minN

4

)
(∥ϕv∥2Cb(H) + ∥ϕ

w∥2Cb(H))

=ML2

V (ϕv, ϕw; τ)2

(13)

Now, we derive an a priori estimate in V on the solution of (10). Note that, contrary to the analysis carried on
Navier-Stokes equations in [5], the proof is more involved as we can not use the enstrophy cancelation property
with the MHD equations. Thus, we need to follow arguments close to the ones given in [29] for the classical 2D
MHD equations. The proof of this result is available in appendix A.

Lemma 3.2. Fix νmin > 0 and suppose that:

α̃− β̃ > νmin, µ ≥
νminN

2

2c2P
.

For any f, g, ϕv, ϕw ∈ Cb(V ), and for any N ≥ 1, if (ṽ, w̃) ∈ Cb(V ) are strong solutions of (10), then the
following bounds are satisfied:

∥ṽ∥2Cb(V ) + ∥w̃∥
2
Cb(V ) ≤ exp

(
27(cB5 )

4

32ν5min

MH(ϕv, ϕw)4
)(

8

c2P
MH(ϕv, ϕw)2

+
c4P

2ν2min

(∥f∥2Cb(V ) + ∥g∥
2
Cb(V ))

+
µ2c4P
2ν2min

(∥ϕv∥2Cb(V ) + ∥ϕ
w∥2Cb(V ))

)
=(MV (ϕ

v, ϕw))2.

(14)
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We can now derive sufficient conditions on µ and N in order to make sure that W is lipschitz continuous.

We stress the fact that this result only supposes that we have a lower bound for the difference α̃− β̃. We think
that this is a reasonable hypothesis since it only ensures that the inverse Reynold numbers Re−1 and Rm−1 are
both bounded below. The proof of this result is postponed to appendix A.

Lemma 3.3. Let (ṽi, w̃i) be solutions of (10) using α̃i, β̃i > 0 and ϕvi , ϕ
w
i , i = 1, 2. Define v = 1

2 (ṽ1 + ṽ2),

w = 1
2 (w̃1 + w̃2), α = 1

2 (α̃1 + α̃2), β = 1
2 (β̃1 + β̃2). For any p ∈ [0, 1], define

γ = α

(
1− |α̃1 − α̃2|p

2αp

)
− β

(
1− |β̃1 − β̃2|

p

2β
p

)

Fix νmin > 0 and suppose that:

α̃i − β̃i > νmin, i = 1, 2, µ >
N2

c2P
γ, N >

8cP
γ
MV (ϕ

v
i , ϕ

w
i ), i = 1, 2.

Then γ ∈ [νmin,
α−β
2 ] and

∥ṽ1 − ṽ2∥2Cb(H) + ∥w̃1 − w̃2∥2Cb(H) ≤
4c2P
γN2

((
α1−p|α̃1 − α̃2|2−p + β

1−p|β̃1 − β̃2|2−p
)
(∥w∥2Cb(V ) + ∥v∥

2
Cb(V ))

+
µ2c2P
γN2

(∥ϕv1 − ϕv2∥2Cb(H) + ∥ϕ
w
1 − ϕw2 ∥2Cb(H))

) (15)

If we add an upper bound on α̃ − β̃, we can get rid on the dependence of µ on γ. Note that νmin can be
taken close to 0, and νmax can be arbitrarily large.

Corollary 3.1. Let (ṽi, w̃i) be solutions of (10) using α̃i, β̃i > 0 and ϕvi , ϕ
w
i , i = 1, 2. Define α = 1

2 (α̃1 + α̃2),

β = 1
2 (β̃1 + β̃2). Fix 0 < νmin < νmax and suppose that:

α− β ∈ (νmin, νmax), µ >
νmaxN

2

c2P
, N >

8cP
νmin

MV (ϕ
v
i , ϕ

w
i ), i = 1, 2.

Then (15) holds.

Proof Remark that we have the inequalities νmin

2 ≤ γ ≤ α − β ≤ νmax. Thus µ > N2

c2P
νmax ≥ N2

c2P
γ and

N > 8cP
νmin

MV (ϕ
v
i , ϕ

w
i ) ≥ 8cP

γ MV (ϕ
v
i , ϕ

w
i ).

We may now show the well-posedness of the determining map.

Theorem 3.1. Let R > 0 and 0 < νmin < νmax. Let f, g ∈ Cb(V ). Define the set D = {(α, β) ∈ (R>0)
2|νmin ≤

α− β ≤ νmax}. If

N >
8cP
νmin

exp

(
27(cB5 )

4

32ν5min

(MR
H)4

)(
8

c2P
(MR

H)2 +
c4P

2ν2min

(∥f∥2CB(V ) + ∥g∥
2
CB(V )) +

µ2c4P
ν2min

R2

)

where (MR
H)2 =

(
2c2P
νmin

)2 (
∥f∥2CB(V ) + ∥g∥

2
CB(V ) + µ2R2

)
, and µ ≥ νmaxN

2

c2P
, then W : D× (BR(0))

2 → (Cb(V ))2

is well-defined.
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Proof The proof of existence of solutions on the attractor for any given tuple (α̃, β̃, ϕv, ϕw) on the domain
of W is very similar to the case of classical 2D MHD, as it is done in [29]. We therefore omit it.

We prove the uniqueness of solutions of (10) in Cb(V ). Given (α̃, β̃, ϕv, ϕw) ∈ D × (BR(0))
2, consider ṽ1

and ṽ2 two solutions of (10) using data (α̃, β̃, ϕv, ϕw) ∈ D × (BR(0))
2. We respect the conditions to apply

corollary 3.1. Thus, it implies that:

∥ṽ1 − ṽ2∥Cb(H) = ∥w̃1 − w̃2∥Cb(H) = 0.

and thus, by the continuous embedding V ⊂ H:

∥ṽ1 − ṽ2∥Cb(V ) = ∥w̃1 − w̃2∥Cb(V ) = 0.

Remark 3.1. The assumption α̃ − β̃ > νmin means that min{R̂e
−1
, R̂m

−1
} > νmin, where R̂e (resp. R̂m) is

an approximate value of Re (resp. Rm). Note that this also implies that max{R̂e
−1
, R̂m

−1
} > νmin. Also,

in the case of an upper bound, we have that min{R̂e
−1
, R̂m

−1
} < νmax. However, it gives no upper bound on

max{R̂e
−1
, R̂m

−1
}. This will be the case when we will bound α̃+ β̃.

4. Parameter recovery inverse problem

Now that W has been proved to be lipschitz continuous, we focus on the inverse problem of identifying the
parameters α and β of some observations PNv and PNw. Most of these results will be stated using general
observations ϕv, ϕw ∈ Cb(V ), and will then be specialized with filtered solutions of (4).

4.1. Problem definition and existence of solution

First of all, we express the inverse problem as the optimization problem (16), and easily prove that it admits
a solution.

Theorem 4.1. Let 0 < νmin < νmax and 0 < ν′min < ν′max. Define the set D′ = {(α, β) ∈ (R>0)
2|νmin ≤ α−β ≤

νmax and ν′min ≤ α+ β ≤ ν′max}. For some R > 0, let ϕv, ϕw ∈ BR(0). Suppose N and µ satisfy the conditions
of theorem 3.1. The minimization problem

min
(α,β)∈D′

J (α, β) =
∥∥∥∥PNW(α, β, ϕv, ϕw)−

(
ϕv

ϕw

)∥∥∥∥
Cb(H)

(16)

admits a solution.

Proof As proved in corollary 3.1, W(·, ·, ϕv, ϕw) is a Lipschitz continuous operator. Thus, it proves that
J : D′ → R is a continuous operator. Since D′ is compact, by the extreme value theorem, J admits a minimum
on D′.

As stated in [5, Fact 4.2], the use of PN makes the whole problem interesting. Indeed, suppose (v,w) is the
solution of (4) using parameters (α∗, β∗). If one tries to solve:

min
(α,β)∈D′

∥∥∥∥W(α, β, ϕv, ϕw)−
(
v
w

)∥∥∥∥
Cb(H)

then one easily proves that the unique solution is (α∗, β∗) ; however, it needs to know entirely v and w. In
(16), we instead choose to see under which minimal amount of data on v and w the problem is well-posed.
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4.2. Uniqueness of solutions

In order to prove the well-posedness of (16), we start by proving the uniqueness of solution. We start
by providing an inequality involving the sum and difference of the observations. The proof of this result is
postponed to appendix A.

Lemma 4.1. Let f, g, ϕv, ϕw ∈ Cb(V ) and αi, βi ∈ D′, i = 1, 2. Fix µ and N as in corollary 3.1. If

∥PNW(α1, β1, ϕ
v, ϕw)− PNW(α2, β2, ϕ

v, ϕw)∥Cb(H) = 0,

then, for all p ∈ [0, 1]:

|(α̃1 − α̃2) + (β̃1 − β̃2)||ψv + ψw| ≤ 8c2P√
νminN

(ν′max)
1
2−

p
2MH(ϕv, ϕw)MV (ϕ

v, ϕw)
(
|α̃1 − α̃2|2−p + |β̃1 − β̃2|2−p

) 1
2

,

|(α̃1−α̃2)− (β̃1 − β̃2)||ψv − ψw|

≤ 8c2P√
νminN

(ν′max)
1
2−

p
2 (MH(ϕv, ϕw) + 2MV (ϕ

v, ϕw))MV (ϕ
v, ϕw)

(
|α̃1 − α̃2|2−p + |β̃1 − β̃2|2−p

) 1
2

.

where (ψv, ψw) = PNW(α1, α2, ϕ
v, ϕw) = PNW(α2, β2, ϕ

v, ϕw).

Note that in lemma 4.1, if one chooses ϕv = PNv and ϕw = PNw, then ϕv+ϕw = 2PNu and ϕv−ϕw = 2PNb
where (u,b) is the solution of (3). Thus, we see that in order to draw a conclusion from lemma 4.1, we must
make sure that the observed modes of 2u = v+w and 2b = v−w are not zero. The assumption to have u ̸= 0
and b ̸= 0 seems natural in order to identify Re−1 and Rm−1, since if they were both zero, then the influence
of the Reynolds numbers on the solution would be invisible. For a proper proof of why this non vanishing
assumption is necessary, see [5, Example 5.4] in the case of the Navier-Stokes equation. In this regard, given
0 ̸= ϕ ∈ Cb(H) we define the index n0(ϕ) = sup{n ∈ N | ∥Pn(ϕ)∥Cb(H) = 0}.

Theorem 4.2. Let (v,w) ∈ (Cb(V ))2 be a solution of (4) using parameter (α∗, β∗) ∈ D′. Suppose that

v +w ̸= 0 and v −w ̸= 0. Choose µ > νmaxN
2

c2P
and

N > max

{
16cP
νmin

MV (v,w), n0(v +w),
C1(PNv, PNw)

∥PN (v +w)∥Cb(H)
, n0(v −w),

C2(PNv, PNw)

∥PN (v −w)∥Cb(H)

}

where C1(v,w) =
8c2P
√
ν′
max√

νmin
MH(v,w)MV (v,w) and C2(v,w) =

8c2P
√
ν′
max√

νmin
(MH(v,w)+2MV (v,w))MV (v,w).

Then (α∗, β∗) is the unique global solution of the minimization problem (16) using (ϕv, ϕw) = (PNv, PNw).

Proof Since (v,w) ∈ (Cb(V ))2, we can take R = max{∥PNv∥Cb(V ), ∥PNw∥Cb(V )} < ∞ and prove using
theorem 3.1 to prove that (v,w) = W(α∗, β∗, PNv, PNw). Remark also that J (α∗, β∗) = 0, thus (α∗, β∗) is a

solution of (16). Let (α̃, β̃) ∈ D′, such that J (α̃, β̃) = 0 and suppose that (α̃, β̃) ̸= (α∗, β∗). Using lemma 3.3
with p = 0, we have the estimates:

N |(α̃− α∗) + (β̃ − β∗)||PNv + PNw| ≤C1(PNv, PNw)
(
|α̃− α∗|2 + |β̃ − β∗|2

) 1
2

≤C1(PNv, PNw)
(
|α̃− α∗|+ |β̃ − β∗|

) (17)

N |(α̃− α∗)− (β̃ − β∗)||PNv − PNw| ≤C2(PNv, PNw)
(
|α̃− α∗|2 + |β̃ − β∗|2

) 1
2

≤C2(PNv, PNw)
(
|α̃− α∗|+ |β̃ − β∗|

)
.

(18)

We now distinguish 2 cases:
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• If α̃− α∗ ≥ 0 and β̃ − β∗ ≥ 0 (or α̃− α∗ ≤ 0 and β̃ − β∗ ≤ 0), then from (17):

N ≤ C1(PNv, PNw)

|PNv + PNw|
α̃− α∗ + β̃ − β∗

(α̃− α∗) + (β̃ − β∗)
≤ C1(PNv, PNw)

|PNv + PNw|
.

• If α̃− α∗ ≥ 0 and β̃ − β∗ ≤ 0 (or α̃− α∗ ≤ 0 and β̃ − β∗ ≥ 0), then from (18):

N ≤ C2(PNv, PNw)

|PNv − PNw|
α̃− α∗ − (β̃ − β∗)

(α̃− α∗)− (β̃ − β∗)
≤ C2(PNv, PNw)

|PNv − PNw|
.

In both cases, these inequalities are in contradiction with the hypothesis on N . Thus, (α̃, β̃) = (α∗, β∗).

4.3. Lipschitz continuity of the inverse problem

We continue the analysis of the well-posedness of the minimization problem (16) by proving a lipschitz
property. As we have shown, the map (PNv, PNw) 7→ argminα,β ∥PNW(α, β, PNv, PNw)−(PNv, PNw)∥CB(H)

is well defined. We will show in theorem 4.3 that this map is also lipschitz continuous. This property is important
in order to make sure that this identification process is stable to perturbations. We start by showing an estimate
on the parameters when using any kind of observations ϕv, ϕw. This result is presented on a time interval [s, t]
which is arbitrary. The proof of this result is found in appendix A.

Lemma 4.2. Let (αi, βi) ∈ D′, i = 1, 2 and ϕv, ϕw ∈ Cb(V ). Let µ and N such that

µ >
νmaxN

2

c2P
, N >

16cP
νmin

MV (ϕ
v, ϕw)

Let (vi,wi) = W(αi, βi, ϕ
v, ϕw), i = 1, 2. Then for any interval [s, t] ⊂ R:

(|α1 − α2|+ |β1 − β2|)
(
inf
[s,t]

∣∣|PNv1|2 − |PNw1|2
∣∣− M

N

)
≤M̃

(
∥PNη∥Cb(H) + ∥PNζ∥Cb(H)

) (19)

where M =
8
√
2c2P
√
ν′
max√

νmin
cLMH(ϕv, ϕw)MV (ϕ

v, ϕw)2, M̃ = 2∥A−1∂tPNv1∥Cb(H) +2∥A−1∂tPNw1∥Cb(H)

+2ν′max(∥PNv1∥Cb(H) + ∥PNw1∥Cb(H)) +2µ 1+δN
2

1−δN2

(
∥A−1PNv1∥Cb(H) + ∥A−1PNw1∥Cb(H)

)
, and δ = e−

µ(t−s)

N2

As an immediate consequence of lemma 4.2, we have the

Theorem 4.3. Let (v,w) ∈ (Cb(V ))2 be a solution of (4) using parameter (α∗, β∗) ∈ D′. Suppose that for

some n > 0 and some time interval [s, t], inf [s,t] ||Pnv|2 − |Pnw|2| ≠ 0. Choose µ > νmaxN
2

c2P
and

N > max

{
16cP
νmin

MV (v,w), n, 2
M

inf [s,t] ||Pnv|2 − |Pnw|2|

}
.

Then for any (α, β) ∈ D′,

(|α− α∗|+ |β − β∗|) ≤ 2M̃

inf [s,t] ||Pnv|2 − |Pnw|2|
J (α, β),

where in J , we use (ϕv, ϕw) = (PNv, PNw), and M,M̃ are defined in lemma 4.2.
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5. Iterative scheme for parameter recovery

Based on the previous results, we now define an iterative scheme in order to recover the parameters α, β from
partial observations, and prove its efficiency numerically.

5.1. Scheme definition and proof

Based on the results of [5], we propose the Algorithm 5.1 in order to recover the parameters α∗ and β∗

from partial observations (PNv∗, PNw∗). In this algorithm, we denote ⟨ϕ⟩ts =
∫ t
s
e−µ(t−τ)ϕ(τ)dτ and, for some

ε1 ∈ (0, νmin), ε
′
1 ∈ (0, ν′min).

D′
ε1 =

{
(αε, βε) ∈ (R>0)

2

∣∣∣∣∣νmin − ε1 ≤ αε − βε ≤ νmax + ε1

ν′min − ε1 ≤ αε + βε ≤ ν′max + ε1

}
.

Algorithm 5.1: Parameters recovery from partial observations.

Input : An admissible set D′, a perturbed admissible set D′
ε1 with 0 < ε1 < νmin, 0 < ε′1 < ν′min.

Input : A time interval [s, t].
Input : N and µ, both sufficiently large.
Input : (PNv∗, PNw∗) such that |⟨|PNv|2 − |PNw|2⟩ts| > 0.
Input : Initial guess (α, β) ∈ D′

ε1 .

repeat
(α0, β0)← (α, β);

(α, β)← (Γα(α),Γβ(β));

Criteria1 ←
(
|α+ β − (α0 + β0)| ≤ (ν′

max−ν
′
min)ε

′
2

ν′
max−ν′

min+ε
′
1

)
;

Criteria2 ←
(
|α− β − (α0 − β0)| ≤ (νmax−νmin)ε2

νmax−νmin+ε1

)
;

until Criteria1 and Criteria2;

return (α, β);

Function (Γα(α),Γβ(β)):
(v,w)←W(α, β, PNv∗, PNw∗);

ρvη ← ⟨A−1PN (v∗ − v), PNv∗⟩;
ρwζ ← ⟨A−1PN (w∗ −w), PNw∗⟩;
ρwη ← ⟨A−1PN (v∗ − v), PNw∗⟩;
ρvζ ← ⟨A−1PN (w∗ −w), PNv∗⟩;
cα1 ← ρvη(t)− ρwζ (t)− e−µ(t−s)(ρvη(s)− ρwζ (s));
cα2 ← ⟨⟨PN (v∗ − v),A−1∂tPNv∗⟩ − ⟨PN (w∗ −w),A−1∂tPNw∗⟩⟩ts;
cα3 ←
−α⟨⟨PN (v∗−v), PNv∗⟩−⟨PN (w∗−w), PNw∗⟩⟩ts−β⟨⟨PN (w∗−w), PNv∗⟩−⟨PN (v∗−v), PNw∗⟩⟩ts;
cβ1 ← ρwη (t)− ρvζ(t)− e−µ(t−s)(ρwη (s)− ρvζ(s));
cβ2 ← −⟨⟨PN (v∗ − v),A−1∂tPNw∗⟩+ ⟨PN (w∗ −w),A−1∂tPNv∗⟩⟩ts;
cβ3 ← α⟨⟨PN (v∗−v), PNw∗⟩−⟨PN (w∗−w), PNv∗⟩⟩ts+β⟨⟨PN (w∗−w), PNw∗⟩−⟨PN (v∗−v), PNv∗⟩⟩ts
return

(
α− cα1 +cα2 +cα3

⟨|PNv∗|2−|PNw∗|2⟩ts
, β − cβ1+c

β
2+c

β
3

⟨|PNv∗|2−|PNw∗|2⟩ts

)
;

The theorem 5.1 proves the convergence of Algorithm 5.1 under some hypothesis on N and µ.
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Theorem 5.1. Let (α∗, β∗) ∈ D′, and denote (v∗,w∗) the solution of (5) using (α∗, β∗). Suppose there exists
n > 0 and an interval [s, t] such that |⟨|Pnv∗|2 − |Pnw∗|2⟩ts| > 0. Let ε1 ∈ (0, νmin), ε

′
1 ∈ (0, ν′min). Let

µ > νmaxN
2

c2P
and N such that

N > max

{
16cP
νmin

MV (Pnv
∗, Pnw

∗), n,
max(νmax − νmin + ε1, ν

′
max − ν′min + ε′1)

min(ε1, ε′1)

M(t− s)
|⟨|Pnv∗|2 − |Pnw∗|2⟩ts|

}

where M =
4
√
2c2P
√
ν′
max√

νmin
cLMH(Pnv

∗, Pnw
∗)MV (Pnv

∗, Pnw
∗)2. Then, for any choice (α, β) ∈ D′

ε1 , with Γα and

Γβ defined in Algorithm 5.1, there exists δ ∈ (0, 1) such that:{
|α∗ + β∗ − (Γα(α) + Γβ(β))| ≤ δ(|α∗ − α|+ |β∗ − β|),

|α∗ − β∗ − (Γα(α)− Γβ(β))| ≤ δ(|α∗ − α|+ |β∗ − β|),

and (Γα(α),Γβ(β)) ∈ D′
ε1 . Thus, if one denotes (αk+1, βk+1) = (Γα(αk),Γβ(βk)) with (α0, β0) ∈ D′

ε1 , then

(αk, βk) −−−−−→
k→+∞

(α∗, β∗).

Furthermore, let ε2 > 0 and ε′2 > 0 be tolerances for stopping. We can infer closeness to the optimal
parameters by examining the residuals:

|αk+1 + βk+1 − (αk + βk)| ≤ (ν′max − ν′min)ε
′
2

ν′max − ν′min + ε′1
,

|αk+1 − βk+1 − (αk − βk)| ≤ (νmax − νmin)ε2
νmax − νmin + ε1

,

=⇒

{
|αk + βk − (α∗ + β∗)| ≤ ε2
|αk − βk − (α∗ − β∗)| ≤ ε′2

Proof Let (α, β) ∈ D′
ε1 and denote (v,w) = W(α, β, PNv∗, PNw∗). Let η = v∗−v, ζ = w∗−w, ψv = PNv∗

and ψw = PNw∗, ρvη = ⟨A−1PNη, ψ
v⟩, ρwζ = ⟨A−1PNζ, ψ

w⟩, ρwη = ⟨A−1PNη, ψ
w⟩, ρvζ = ⟨A−1PNζ, ψ

v⟩. We

resume the proof from equation (26), which reads as:

0 = ρvη(t)− ρwζ (t)−e−µ(t−s)(ρvη(s)− ρwζ (s))
+(α∗ − α)⟨|ψv|2 − |ψw|2⟩ts
−⟨⟨PNη,A−1∂tψ

v⟩ − ⟨PNζ,A−1∂tψ
w⟩⟩ts

+α⟨⟨η, ψv⟩ − ⟨ζ, ψw⟩⟩ts + β⟨⟨ζ, ψv⟩ − ⟨η, ψw⟩⟩ts
+⟨⟨B(v∗, ζ) + B(η,w),A−1ψv⟩ − ⟨B(w∗, η) + B(ζ,v),A−1ψw⟩⟩ts.

After some computations:

α∗ − Γα(α) = −⟨⟨B(v
∗, ζ) + B(η,w),A−1ψv⟩ − ⟨B(w∗, η) + B(ζ,v),A−1ψw⟩⟩ts

⟨|ψv|2 − |ψw|2⟩ts
.

where

Γα(α) =α−
ρvη(t)− ρwζ (t)− e−µ(t−s)(ρvη(s)− ρwζ (s))

⟨|ψv|2 − |ψw|2⟩ts

+
⟨⟨PNη,A−1∂tψ

v⟩ − ⟨PNζ,A−1∂tψ
w⟩⟩ts

⟨|ψv|2 − |ψw|2⟩ts

− α⟨⟨η, ψv⟩ − ⟨ζ, ψw⟩⟩ts + β⟨⟨ζ, ψv⟩ − ⟨η, ψw⟩⟩ts
⟨|ψv|2 − |ψw|2⟩ts
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Similarly, starting from the equation (30):

0 = ρwη (t)− ρvζ(t)−e−µ(t−s)(ρwη (s)− ρvζ(s))
+(β∗ − β)⟨|ψw|2 − |ψv|2⟩ts
−⟨⟨PNη,A−1∂tψ

w⟩ − ⟨PNζ,A−1∂tψ
v⟩⟩ts

+α⟨⟨η, ψw⟩ − ⟨ζ, ψv⟩⟩ts + β⟨⟨ζ, ψw⟩ − ⟨η, ψv⟩⟩ts
+⟨⟨B(v∗, ζ) + B(η,w),A−1ψw⟩ − ⟨B(w∗, η) + B(ζ,v),A−1ψv⟩⟩ts.

and then with the same computations as before:

β∗ − Γβ(β) =
⟨⟨B(v∗, ζ) + B(η,w),A−1ψw⟩ − ⟨B(w∗, η) + B(ζ,v),A−1ψv⟩⟩ts

⟨|ψv|2 − |ψw|2⟩ts

where

Γβ(β) =β −
ρwη (t)− ρvζ(t)− e−µ(t−s)(ρwη (s)− ρvζ(s))

⟨|ψw|2 − |ψv|2⟩ts

+
⟨⟨PNη,A−1∂tψ

w⟩ − ⟨PNζ,A−1∂tψ
v⟩⟩ts

⟨|ψw|2 − |ψv|2⟩ts

− α⟨⟨η, ψw⟩ − ⟨ζ, ψv⟩⟩ts + β⟨⟨ζ, ψw⟩ − ⟨η, ψv⟩⟩ts
⟨|ψw|2 − |ψv|2⟩ts

From these equations, we deduce, by addition and substraction:

α∗ + β∗ − (Γα(α) + Γβ(β)) =

⟨⟨B(v∗, ζ) + B(η,w) + B(w∗, η) + B(ζ,v),A−1(ψw − ψv)⟩⟩ts
⟨|ψv|2 − |ψw|2⟩ts

α∗ − β∗ − (Γα(α)− Γβ(β)) =

− ⟨⟨B(v
∗, ζ) + B(η,w)− ⟨B(w∗, η)− B(ζ,v),A−1(ψw + ψv)⟩⟩ts

⟨|ψv|2 − |ψw|2⟩ts
Following the arguments shown in the proof of lemma 4.2, we prove that∣∣⟨⟨B(v∗, ζ) + B(η,w) + B(w∗, η) + B(ζ,v),A−1(ψw − ψv)⟩⟩ts

∣∣ ≤ M(t−s)
N (|α∗ − α|+ |β∗ − β|) and∣∣⟨⟨B(v∗, ζ) + B(η,w)− B(w∗, η)− B(ζ,v),A−1(ψw + ψv)⟩⟩ts

∣∣ ≤ M(t−s)
N (|α∗ − α|+ |β∗ − β|). Thus, one has the

estimates: 
|α∗ + β∗ − (Γα(α) + Γβ(β))| ≤ M(t− s)

N |⟨|ψv|2 − |ψw|2⟩ts|
(|α∗ − α|+ |β∗ − β|)

|α∗ − β∗ − (Γα(α)− Γβ(β))| ≤ M(t− s)
N |⟨|ψv|2 − |ψw|2⟩ts|

(|α∗ − α|+ |β∗ − β|)

Differentiating the cases when α∗ − α and β∗ − β have the same sign or opposite signs, one proves that

|α∗−α|+ |β∗− β| ≤ mν where mν = max(νmax− νmin + ε1, ν
′
max− ν′min + ε′1). Choose N > M(t−s)

δ|⟨|ψv|2−|ψw|2⟩ts|
for

some δ < 1. Thus: {
|α∗ + β∗ − (Γα(α) + Γβ(β))| ≤ δ(|α∗ − α|+ |β∗ − β|) ≤ δmν ,

|α∗ − β∗ − (Γα(α)− Γβ(β))| ≤ δ(|α∗ − α|+ |β∗ − β|) ≤ δmν ,

and using (α∗, β∗) ∈ D′: {
ν′min − δmν ≤ Γα(α) + Γβ(β) ≤ ν′max + δmν ,

νmin − δmν ≤ Γα(α)− Γβ(β) ≤ νmax + δmν .
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Choose δ =
min(ε1,ε

′
1)

mν
. Thus: {

ν′min − ε′1 ≤ Γα(α) + Γβ(β) ≤ ν′max + ε′1,

νmin − ε1 ≤ Γα(α)− Γβ(β) ≤ νmax + ε1.

Furthermore, we also verify that δ < 1, since:

δ ≤ ε1
νmax − (νmin − ε1)

≤ νmin

νmax
< 1.

Concerning the convergence of {(αk, βk} we prove that:|α
∗ + β∗ − (αk + βk)| ≤ δkmν −−−−→

k→∞
0,

|α∗ − β∗ − (αk − βk)| ≤ δkmν −−−−→
k→∞

0.

Concerning now the closeness to the optimal solution, denote ω+ = α∗ + β∗, ω− = α∗ − β∗, Γ+,k = αk + βk,
Γ−,k = αk − βk. {

|Γ+,k − ω+| ≤ |Γ+,k+1 − Γ+,k|+ |Γ+,k+1 − ω+|,

|Γ−,k − ω−| ≤ |Γ−,k+1 − Γ−,k|+ |Γ−,k+1 − ω−|,
so: {

|Γ+,k+1 − Γ+,k| ≥ |Γ+,k − ω+|+ |Γ+,k+1 − ω+| ≥ (1− δ)|Γ+,k − ω+|,

|Γ−,k−1 − Γ−,k| ≥ |Γ−,k − ω−|+ |Γ−,k+1 − ω−| ≥ (1− δ)|Γ−,k − ω−|,
If after k iterations, |Γ+,k − ω+| > ε2 or |Γ−,k − ω−| > ε′2, then:

|Γ+,k+1 − Γ+,k| ≥ (1− δ)ε′2 ≥
(ν′max − ν′min)ε

′
2

ν′max − ν′min + ε′1
,

or

|Γ−,k−1 − Γ−,k| ≥ (1− δ)ε2 ≥
(νmax − νmin)ε2
νmax − νmin + ε1

,

The contrapositive of this implication ends the proof.

5.2. Numerical test

We now test numerically the algorithm 5.1. More exactly, we rewrite the algorithm in terms of the variables
(u,b) and test the hypothesis on N and µ.

5.2.1. Algorithm in term of velocity and magnetic field

The analysis done above can be carried with the equations (3) in term of velocity and magnetic field in order
to identify Re−1 and Rm−1 and prove its convergence. We rewrite the algorithm in these terms in Algorithm

5.2. In there, the operator W(Re−1,Rm−1, ϕu, ϕb) should be understood as the solutions (ũ, b̃) of the equations:

∂tũ− Re−1∆ũ+ (ũ · ∇)ũ− (b̃ · ∇)b̃+∇p = f̃ + µ(ϕu − PN (ũ)) in Ω,

∂tb̃− Rm−1∆b̃+ (ũ · ∇)b̃− (b̃ · ∇)ũ = g̃ + µ(ϕb − PN (b̃)) in Ω,

∇ · ũ = ∇ · b̃ = 0,

ũ(0), b̃(0) given.

(20)
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Algorithm 5.2: Parameters recovery from partial velocity and magnetic field observations.

Input : An admissible set D′, a perturbed admissible set D′
ε1 with 0 < ε1 < νmin, 0 < ε′1 < ν′min.

Input : A time interval [s, t].
Input : N and µ, both sufficiently large.
Input : (PNu∗, PNb∗) such that ⟨|PNu∗|2⟩ts ̸= 0 and ⟨|PNb∗|2⟩ts ̸= 0.
Input : Initial guess (Re−1,Rm−1) ∈ D′

ε1 .

repeat
(Re−1

0 ,Rm−1
0 )← (Re−1,Rm−1);

(Re−1,Rm−1)← Γ(Re−1,Rm−1);

Criteria1 ←
(
|Re−1 − Re−1

0 | ≤
(ν′

max−ν
′
min)ε

′
2

ν′
max−ν′

min+ε
′
1

)
;

Criteria2 ←
(
|Rm−1 − Rm−1

0 | ≤
(νmax−νmin)ε2
νmax−νmin+ε1

)
;

until Criteria1 and Criteria2;

return (Re−1,Rm−1);

Function Γ(Re−1,Rm−1):
(u,b)←W(Re−1,Rm−1, PNu∗, PNb∗);

ρuη ← ⟨A−1PN (u∗ − u), PNu∗⟩;
ρbζ ← ⟨A−1PN (b∗ − b), PNb∗⟩;
cRe
1 ← ρuη(t)− e−µ(t−s)ρuη(s);
cRe
2 ← ⟨⟨A−1PN (u∗ − u), ∂tPNu∗⟩⟩ts;
cRe
3 ← −Re

−1⟨⟨PN (u∗ − u), PNu∗⟩⟩ts;
cRm
1 ← ρbζ(t)− e−µ(t−s)ρbζ(s);
cRm
2 ← ⟨⟨A−1PN (b∗ − b), ∂tPNb∗⟩⟩ts;
cRm
3 ← −Rm−1⟨⟨PN (b∗ − b), PNb∗⟩⟩ts
return

(
Re−1 − cRe

1 +cRe
2 +cRe

3

⟨|PNu∗|2⟩ts
, Rm−1 − cRm

1 +cRm
2 +cRm

3

⟨|PNb∗|2⟩⟩ts

)
;

We will test a parameter recovering scheme in the same framework of [19] where the authors test a data
assimilation technique with the 2D MHD equations.

5.2.2. Reference solution

We compute a reference solution from which we will recover the viscosity and magnetic resistivity. The
trajectory should exhibit some non-trivial, time-dependant trajectory in order to test adequately the data
assimilation algorithm. We choose a two-mode force for each equation f, g : Ω→ R2, defined by

f(x, y) = 2R
((

2 + 2i
1 + i

)
ei(x−2y) +

(
−6
0

)
e3iy
)
/Mf ,

g(x, y) = 2R
((

4− 3i
− 2

3 (4− 3i)

)
ei(2x+3y) +

(
−3 + 7i

1
5 (−3 + 7i)

)
ei(x−5y)

)
/Mg,

where Mf ,Mg are chosen such that |f | = |g| = 10. Concerning the Reynolds numbers, we chose Re−1 =

Rm−1 = 0.01. These values are chosen in order to make a compromise on time-step and the resolution of the
spectral grid that we have to take in order to solve the equations.

All of our computations were performed using dedalus [9], an open source pseudo-spectral package. An
implicit/explicit Runga Kutta 222 time stepping scheme was used ; the linear terms were solved implicitly and
the nonlinear terms explicitly. The spectral grid uses 2562 Fourier modes, and the time-step is set to dt = 1e−4.
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The equation (3) are solved on the time interval [0, t0], t0 = 729.92, using (u(0),b(0)) = 0. Some results in this
framework are shown in [19, Section 3], where the authors argue that doubling the number of Fourier modes does
not change a lot the computed solution. Afterwards, the equations (3) and (20) are solved on [s, t] = [t0, t0 +1]

using (ũ(0), b̃(0)) = 0 using µ = 100 and we apply the Algorithm 5.2.

5.2.3. Numerical results

Numerically, we will mainly test the assumptions on N found in theorem 5.1. Also, following some remarks
in [10], we test if we see a difference if the initial guess on the unknown parameters is above or below the correct
values. All results are found in Figures 1 and 2.
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−
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Figure 1. Errors on the parameters along iterations using (Re−1
0 ,Rm−1

0 ) = (10−1, 10−1),
(Re−1

∗ ,Rm−1
∗ ) = (10−2, 10−2) and different values of N .
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Figure 2. Errors on the parameters along iterations using (Re−1
0 ,Rm−1

0 ) = (9.10−3, 9.10−3),
(Re−1

∗ ,Rm−1
∗ ) = (10−2, 10−2) and different values of N .

First of all, we note that, contrary to the observation made in [10], the fact that the initial guess is below
or above the true value does not change the behavior of the algorithm. As it can be seen from the figures 1
and 2, all values of N induce a correction of the initial guess. However, for N ∈ {8, 16}, the error reaches a
plateau preventing any improvement and thus the convergence. The cases N ∈ {32, 64} are also interesting, as
they show that doubling (in each direction) the number of nodes does not change the accuracy nor the speed
of convergence of the method. We note that in both cases, the convergence is extremely fast.
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6. Conclusion

This paper focused on the recovery of the viscosity and magnetic resistivity in the 2D MHD equations based
on partial observations. The continuous data assimilation approach reveals to be well suited for this problem,
and we proved numerous results which let us build an efficient algorithm. However, all these results rely on the
use of Fourier modes observations. The extension of these results to other types of observations and interpolant
operators should be a topic of research, given the practical applications it may reach.

Appendix A. Proofs of the previous lemmata

Proof of lemma 3.1 Let (ṽ, w̃) be solutions of (10). Taking the inner product of the first line in (10) with
ṽ gives, using Young’s inequality:

1

2

d

dt
|ṽ|2 + α̃∥ṽ∥2 =− β̃⟨Aw̃, ṽ⟩+ ⟨f, ṽ⟩+ µ⟨ϕv, ṽ⟩ − µ|PN ṽ|2

≤ β̃
2
(∥ṽ∥2 + ∥w̃∥2) + c1

2
|ṽ|2 + 1

2c1
|f |2 − µ|PN ṽ|2 + µc2

2
|ṽ|2 + µ

2c2
|ϕv|2,

for some arbitrary constants c1, c2 > 0. Note that:

|ṽ|2 = |PN ṽ|2 + |ṽ − PN ṽ|2 ≤ |PN ṽ|2 + c2P
N2
∥ṽ∥2.

Thus, after rearranging the terms, we get:

1

2

d

dt
|ṽ|2 +

(
α̃− β̃

2
− c2P (c1 + µc2)

2N2

)
∥ṽ∥2 − β̃

2
∥w̃∥2 +

(
µ− c1 + µc2

2

)
|PN ṽ|2

≤ 1

2c1
|f |2 + µ

2c2
|ϕv|2,

Similarly, we prove that:

1

2

d

dt
|w̃|2 +

(
α̃− β̃

2
− c2P (c1 + µc2)

2N2

)
∥w̃∥2 − β̃

2
∥ṽ∥2 +

(
µ− c1 + µc2

2

)
|PN w̃|2

≤ 1

2c1
|g|2 + µ

2c2
|ϕw|2.

Summing the two inequalities, we have

1

2

d

dt
(|ṽ|2 + |w̃|2) +

(
α̃− β̃ − c2P (c1 + µc2)

2N2

)
(∥ṽ∥2 + ∥w̃∥2)

+

(
µ− c1 + µc2

2

)
(|PN ṽ|2 + |PN w̃|2)

≤ 1

2c1
(|f |2 + |g|2) + µ

2c2
(|ϕv|2 + |ϕw|2).
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Denote r = νminN
2

µc2P
. For some ε, δ ∈ (0, 1), we now choose c1 = 2µrδ(1 − ε) and c2 = 2r(1 − δ). Thus,

c1 + µc2 = 2µr(1− δε), and the previous differential inequality becomes:

1

2

d

dt
(|ṽ|2 + |w̃|2) +

(
α̃− β̃ − νmin(1− δε)

)
(∥ṽ∥2 + ∥w̃∥2)

+ µ (1− r(1− δε)) (|PN ṽ|2 + |PN w̃|2)

≤ 1

2c1
(|f |2 + |g|2) + µ

2c2
(|ϕv|2 + |ϕw|2).

(21)

Observe that, due to (2),

∥ṽ∥2 ≥ N2

c2P
|ṽ − PN ṽ|2 =

N2

c2P
(|ṽ|2 − |PN ṽ|2).

Thus,

νminδε∥ṽ∥2 + µ(1− r(1− δε))|PN ṽ|2 ≥ µrδε|ṽ|2 + µ(1− r)|PN ṽ|2.

Consequently:

1

2

d

dt
(|ṽ|2 + |w̃|2) + µrδϵ(|ṽ|2 + |w̃|2)

+
(
α̃− β̃ − νmin

)
(∥ṽ∥2 + ∥w̃∥2) + µ (1− r) (|PN ṽ|2 + |PN w̃|2)

≤ 1

2c1
(|f |2 + |g|2) + µ

2c2
(|ϕv|2 + |ϕw|2).

Note that due to the assumption on µ, r ≤ 1. Thus, we can drop the two last term on the left hand side of the
previous inequality, and we prove:

d

dt
(|ṽ|2 + |w̃|2) + 2

νminN
2

c2P
δϵ(|ṽ|2 + |w̃|2) ≤ 1

c1
(|f |2 + |g|2) + µ

c2
(|ϕv|2 + |ϕw|2).

We now choose ε = 2
3 , δ =

3
4 , so that δε = 1

2 , c1 = 1
4
νminN

2

c2P
and c2 = 1

2
νminN

2

c2Pµ
. Thus, one has:

d

dt
(|ṽ|2 + |w̃|2) + νminN

2

c2P
(|ṽ|2 + |w̃|2)

≤ 4c2P
νminN2

(∥f∥2Cb(H) + ∥g∥
2
Cb(H)) +

2µ2c2P
νminN2

(∥ϕv∥2Cb(H) + ∥ϕ
w∥2Cb(H)).

Denote

p =
4c2P

νminN2
(∥f∥2Cb(H) + ∥g∥

2
Cb(H)) +

2µ2c2P
νminN2

(∥ϕv∥2Cb(H) + ∥ϕ
w∥2Cb(H)).

By Grönwall’s lemma, for all −∞ < s < t < +∞:

|ṽ(t)|2 + |w̃(t)|2 ≤ (|ṽ(s)|2 + |w̃(s)|2) exp
(
−νminN

2

c2P
(t− s)

)
+

c2P
N2νmin

p.
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Since by assumption, ṽ, w̃ ∈ Cb(H), then (|ṽ(s)|2 + |w̃(s)|2) exp
(
−νminN

2

c2P
(t− s)

)
→ 0 when s → −∞. Thus,

for all t ∈ R:

|ṽ(t)|2 + |w̃(t)|2 ≤ c2P
N2νmin

p,

=

(
2c2P

νminN2

)2

(∥f∥2Cb(H) + ∥g∥
2
Cb(H))

+ 2

(
µc2P

νminN2

)2

(∥ϕv∥2Cb(H) + ∥ϕ
w∥2Cb(H)).

Concerning now (13), we resume the calculations at (21). Choosing ε = 4
5 , δ =

15
16 , one proves that:

d

dt
(|ṽ|2 + |w̃|2) + 3

2
νmin(∥ṽ∥2 + ∥w̃∥2)

≤ 4

3µr
(|f |2 + |g|2) + 16µ

r
(|ϕv|2 + |ϕw|2).

We now integrate on each side of the inequality, giving, for all τ > 0 and for all t ∈ R:

3

2
νmin

∫ t

t−τ
(∥ṽ(s)∥2 + ∥w̃(s)∥2)ds ≤ 4

3µr
(∥f∥2Cb(H) + ∥g∥

2
Cb(H))τ

+
16µ

r
(∥ϕv∥2Cb(H) + ∥ϕ

w∥2Cb(H))τ

+ |ṽ(t− τ)|2 + |w̃(t− τ)|2,

≤ 4

3µr
(∥f∥2Cb(H) + ∥g∥

2
Cb(H))τ

+
16µ

r
(∥ϕv∥2Cb(H) + ∥ϕ

w∥2Cb(H))τ

+ (MH(ϕv, ϕw))2.

Proof of lemma 3.2 Let (ṽ, w̃) be solutions of (10). Denote L the Lebesgue measure on R, and fix t ∈ R,
τ > 0. From (13), we see that, for any ρ > 0:

L(s ∈ [t− τ, t] | (∥ṽ(s)∥2 + ∥w̃(s)∥2) ≥ ρ} ≤ML2

V (ϕv, ϕw; τ)2ρ−1.

Taking ρ = 2ML2

V (ϕv, ϕw; τ)2τ−1, one finds:

L(s ∈ [t− τ, t] | (∥ṽ(s)∥2 + ∥w̃(s)∥2) ≥ ρ} ≤ τ

2
.

Thus, in every interval of length τ > 0, there exists a time t0 ∈ [t− τ, t] such that:

∥ṽ(t0)∥2 + ∥w̃(t0)∥2 ≤
2

τ
ML2

V (ϕv, ϕw; τ)2 (22)
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Now, we test the equations (10) with (Aṽ,Aw̃) ; using similar calculations as in lemma 3.1, we prove that
there exist constants c1, c2 > 0 such that:

1

2

d

dt
(∥ṽ∥2 + ∥w̃∥2)+

(
α̃− β̃ − c2P

N2

c1 + µc2
2

)
(|Aṽ|2 + |Aw̃|2)

+

(
µ− c1 + µc2

2

)
(∥PN ṽ∥2 + ∥PN w̃∥2)

≤ 1

2c1
(∥f∥2Cb(V ) + ∥g∥

2
Cb(V )) +

µ

2c2
(∥ϕv∥2Cb(V ) + ∥ϕ

w∥2Cb(V ))

− ⟨B(w̃, ṽ),Aṽ⟩ − ⟨B(ṽ, w̃),Aw̃⟩

Using (9) and Young’s inequality (11) with p = 4 and q = 4
3 , one proves that for all c3 > 0:

⟨B(w̃, ṽ),Aṽ⟩ ≤cB5 |w̃|
1
2 ∥w∥ 1

2 ∥ṽ∥ 1
2 |Aṽ| 32

≤cB5
(

1

4c43
|w̃|2∥w̃∥2∥ṽ∥2 + 3

4
c

4
3
3 |Aṽ|2

)
≤cB5

(
|w̃|2

8c43
(∥w̃∥4 + ∥ṽ∥4) + 3

4
c

4
3
3 |Aṽ|2

)
≤cB5

(
|w̃|2

8c43
(∥w̃∥2 + ∥ṽ∥2)2 + 3

4
c

4
3
3 |Aṽ|2

)
.

Similarly:

⟨B(ṽ, w̃),Aw̃⟩ ≤ cB5
(
|ṽ|2

8c43
(∥w̃∥2 + ∥ṽ∥2)2 + 3

4
c

4
3
3 |Aw̃|2

)
.

Thus, one has the differential inequality:

1

2

d

dt
(∥ṽ∥2 + ∥w̃∥2)+

(
α̃− β̃ − c2P

N2

c1 + µc2
2

− 3

4
cB5 c

4
3
3

)
(|Aṽ|2 + |Aw̃|2)

+

(
µ− c1 + µc2

2

)
(∥PN ṽ∥2 + ∥PN w̃∥2)

≤ 1

2c1
(∥f∥2Cb(V ) + ∥g∥

2
Cb(V )) +

µ

2c2
(∥ϕv∥2Cb(V ) + ∥ϕ

w∥2Cb(V ))

+
cB5
8c43

MH(ϕv, ϕw)2(∥ṽ∥2 + ∥w̃∥2)2

We choose c3 =
(

2(α̃−β̃)
3cB5

) 3
4

so that 3
4c
B
5 c

4
3
3 = α̃−β̃

2 . Denoting C =
27(cB5 )4

32ν3
min

, one proves that
cB5
8c43
≤ C

2 . Now,

denoting r = νminN
2

µc2P
, we choose c1 = µrδ(1− ε), c2 = r(1− δ). Thus, c1 + µc2 = µr(1− δε) and the differential

inequality becomes:

d

dt
(∥ṽ∥2 + ∥w̃∥2)+

(
α̃− β̃ − νmin(1− δε)

)
(|Aṽ|2 + |Aw̃|2)

+ µ (2− r(1− δε)) (∥PN ṽ∥2 + ∥PN w̃∥2)

≤ 1

c1
(∥f∥2Cb(V ) + ∥g∥

2
Cb(V )) +

µ

c2
(∥ϕv∥2Cb(V ) + ∥ϕ

w∥2Cb(V ))

+ CMH(ϕv, ϕw)2(∥ṽ∥2 + ∥w̃∥2)2
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We now use the inequality |Aṽ|2 ≥ N2

c2P
(∥ṽ∥2 − ∥PN ṽ∥2) to prove that:

νminδε|Aṽ|2 + µ(1− r(1− δε))∥PN ṽ∥2 ≥µrδε∥ṽ∥2 + µ(2− r(1− δε)− rδε)∥PN ṽ∥2

≥µrδε∥ṽ∥2 + µ(2− r)∥PN ṽ∥2.

This implies the inequality:

d

dt
(∥ṽ∥2 + ∥w̃∥2)+µrδε(∥ṽ∥2 + ∥w̃∥2) +

(
α̃− β̃ − νmin

)
(|Aṽ|2 + |Aw̃|2)

+ µ (2− r) (∥PN ṽ∥2 + ∥PN w̃∥2)

≤ 1

c1
(∥f∥2Cb(V ) + ∥g∥

2
Cb(V )) +

µ

c2
(∥ϕv∥2Cb(V ) + ∥ϕ

w∥2Cb(V ))

+
cB5
4c43

MH(ϕv, ϕw)2(∥ṽ∥2 + ∥w̃∥2)2

Note that µ ≥ νminN
2

2c2P
is equivalent to r ≤ 2. Since we suppose that α̃ − β̃ ≥ νmin, we can get rid of the two

last terms in the left-hand side of the inequality. We choose once again ε = 2
3 and δ = 3

4 , which implies that

δε = 1
2 , c1 = 1

4µr, c2 = r
4 . Thus, we proved that:

d

dt
(∥ṽ∥2 + ∥w̃∥2) + µr

2
(∥ṽ∥2 + ∥w̃∥2) ≤ 4

µr
(∥f∥2Cb(V ) + ∥g∥

2
Cb(V ))

+
4µ

r
(∥ϕv∥2Cb(V ) + ∥ϕ

w∥2Cb(V ))

+ CMH(ϕv, ϕw)2(∥ṽ∥2 + ∥w̃∥2)2.

For some t0 ∈ R and any t ∈ R, denote ψ(t) = ∥ṽ(t)∥2 + ∥w̃(t)∥2, Ψ(t; t0) = CMH(ϕv, ϕw)
∫ t
t0
ψ(s)ds, and

eΨ(t; t0) = exp(−Ψ(t; t0)). The differential inequality can now be rewritten:

d

dt
ψ +

µr

2
ψ ≤ C ′ + CMH(ϕv, ϕw)2ψ2,

where we denote C ′ = 4
µr (∥f∥

2
Cb(V ) + ∥g∥

2
Cb(V )) +

4µ
r (∥ϕv∥2Cb(V ) + ∥ϕ

w∥2Cb(V )). Remark that

d

dt
(ψ(t)eΨ(t; t0)) =eΨ(t; t0)

(
d

dt
ψ(t)− CMH(ϕv, ϕw)ψ(t)2

)
≤eΨ(t; t0)

(
C ′ − µr

2
ψ(t)

)
≤C ′eΨ(t; t0),

since ψ(t) ≥ 0 for all t. Thus, integrating each side of the inequality, one proves that, for all t ≥ t0 :

ψ(t)eΨ(t; t0) ≤ψ(t0) + C ′
∫ t

t0

eΨ(s; t0)ds

≤ψ(t0) + C ′(t− t0).

Thus:

ψ(t) ≤ eΨ(t; t0)−1(ψ(t0) + C ′(t− t0)).
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In (22) and (13), choose τ =
c2P

8νminN2 . Note that with this choice of τ , one hasML2

V (ϕv, ϕw, τ)2 ≤ 4
νmin

MH(ϕv, ϕw)2.

Thanks to (22), there exists t0 ∈ [t− τ, t] such that

ψ(t0) ≤
2νmin

c2P
ML2

V (ϕv, ϕw, τ)2 ≤ 8

c2P
MH(ϕv, ϕw)2.

For such t0, we also prove, thanks to (13), that:

Ψ(t; t0) =
C

νmin
MH(ϕv, ϕw)2

∫ t

t0

ψ(s)ds

≤ C

νmin
MH(ϕv, ϕw)2

∫ t

t−τ
ψ(s)ds

≤ C

νmin
MH(ϕv, ϕw)2ML2

V (ϕv, ϕw, τ)2

≤ 4C

ν2min

MH(ϕv, ϕw)4.

Thus, eΨ(t; t0)
−1 ≤ exp

(
4C
ν2
min
MH(ϕv, ϕw)4

)
Thus, we have proven that, for all t ∈ R:

ψ(t) ≤ exp

(
4C

ν2min

MH(ϕv, ϕw)4
)(

8

c2P
MH(ϕv, ϕw)2 + C ′τ

)
.

Proof of lemma 4.1 Denote (ṽi, w̃i) = W(αi, βi, ϕ
v, ϕw), i = 1, 2, and assume that PN (ṽ1, w̃1) =

PN (ṽ2, w̃2) = (ψv, ψw). Writing (10) in Fourier space, for any k ∈ Z2, |k| ≤ N , we have, for i = 1, 2:

d

dt
̂̃vi(k) + |k|2

c2P
(α̃i ̂̃vi(k) + β̃i ̂̃wi(k)) +

i

cP

∑
h

(h ̂̃wi(h))̂̃vi(k− h) =f̂(k) + µ(ϕ̂v(k)− ̂̃vi(k)),
d

dt
̂̃wi(k) +

|k|2

c2P
(α̃i ̂̃wi(k) + β̃i ̂̃vi(k)) + i

cP

∑
h

(ĥ̃vi(h)) ̂̃wi(k− h) =ĝ(k) + µ(ϕ̂w(k)− ̂̃wi(k)).

Denote η = ṽ1 − ṽ2, ζ = w̃1 − w̃2. We subtract the equations for i = 1 with the equations for i = 2, and we
get, using the assumptions on equality of low modes:

|k|2

c2P
((α̃1 − α̃2)ψ̂v(k) + (β̃1 − β̃2)ψ̂w(k)) +

i

cP

∑
h

(h ̂̃w2(h))η̂(k− h) + (hζ̂(h))̂̃v1(k− h) =0,

|k|2

c2P
((α̃1 − α̃2)ψ̂w(k) + (β̃1 − β̃2)ψ̂v(k)) +

i

cP

∑
h

(hη̂(h)) ̂̃w2(k− h) + (ĥ̃v1(h))ζ̂(k− h) =0,

We add and subtract these two equations in order to get:

|k|2

c2P
((α̃1 − α̃2) + (β̃1 − β̃2))(ψ̂v(k) + ψ̂w(k))

+
i

cP

∑
h

(k ̂̃w2(k− h))η̂(h) + (kζ̂(k− h))̂̃v1(h) = 0,
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|k|2

c2P
((α̃1 − α̃2)− (β̃1 − β̃2))(ψ̂v(k)− ψ̂w(k))

+
i

cP

∑
h

((k− 2h) ̂̃w2(k− h))η̂(h)− ((k− 2h)̂̃v1(k− h))ζ̂(h) = 0,

These imply the inequalities:

|k|2

c2P
|(α̃1 − α̃2) + (β̃1 − β̃2)||ψ̂v(k) + ψ̂w(k)|

≤ |k|
cP

∑
h

∣∣∣ ̂̃w2(k− h)η̂(h)
∣∣∣+ ∣∣∣ζ̂(k− h)̂̃v1(h)

∣∣∣ ,
|k|2

c2P
|(α̃1 − α̃2)− (β̃1 − β̃2)||ψ̂v(k)− ψ̂w(k)|

≤|k|
cP

∑
h

∣∣∣ ̂̃w2(k− h)η̂(h)
∣∣∣+ ∣∣∣̂̃v1(k− h)ζ̂(h)

∣∣∣
+

2

cP

∑
h

∣∣∣((k− h) ̂̃w2(k− h))η̂(h)
∣∣∣+ ∣∣∣((k− h)̂̃v1(k− h))ζ̂(h)

∣∣∣ .
Now we estimate the convolutions. Applying the Cauchy-Schwarz inequality and Parseval’s theorem, we

obtain: ∑
h

∣∣∣ ̂̃w2(k− h)η̂(h)
∣∣∣+ ∣∣∣ζ̂(k− h)̂̃v1(h)

∣∣∣ ≤ |w̃2||η|+ |ṽ1||ζ|,∑
h

∣∣∣((k− h) ̂̃w2(k− h))η̂(h)
∣∣∣+ ∣∣∣((k− h)̂̃v1(k− h))ζ̂(h)

∣∣∣ ≤ ∥w̃2∥|η|+ ∥ṽ1∥|ζ|,

Thus, we have proved the inequalities:

|k|2

c2P
|(α̃1 − α̃2) + (β̃1 − β̃2)||ψ̂v(k) + ψ̂w(k)| ≤ |k|

cP
(|w̃2||η|+ |ṽ1||ζ|),

|k|2

c2P
|(α̃1 − α̃2)− (β̃1 − β̃2)||ψ̂v(k)− ψ̂w(k)| ≤

|k|
cP

(|w̃2||η|+ |ṽ1||ζ|)

+
2

cP
(∥w̃2∥|η|+ ∥ṽ1∥|ζ|).

We multiply each inequality by
c2P |ψ̂v(k)±ψ̂w(k)|

|k|2 :

|(α̃1 − α̃2) + (β̃1 − β̃2)||ψ̂v(k) + ψ̂w(k)|2 ≤ cP
|k|

(|w̃2||η|+ |ṽ1||ζ|)|ψ̂v(k) + ψ̂w(k)|,

|(α̃1 − α̃2)− (β̃1 − β̃2)||ψ̂v(k)− ψ̂w(k)|2 ≤
cP
|k|

(|w̃2||η|+ |ṽ1||ζ|)|ψ̂v(k)− ψ̂w(k)|

+
2cP
|k|2

(∥w̃2∥|η|+ ∥ṽ1∥|ζ|)|ψ̂v(k)− ψ̂w(k)|.

Take now the sum for all k ∈ Z2, 0 < |k| ≤ N , and use Cauchy-Schwartz in order to prove:

|(α̃1 − α̃2) + (β̃1 − β̃2)||ψv + ψw|2 ≤ cP (|w̃2||η|+ |ṽ1||ζ|)|ψv − ψw|

 ∑
0<|k|≤N

1

|k|2

 1
2

,



24 TITLE WILL BE SET BY THE PUBLISHER

|(α̃1 − α̃2)− (β̃1 − β̃2)||ψv − ψw|2 ≤cP (|w̃2||η|+ |ṽ1||ζ|)|ψv − ψw|

 ∑
0<|k|≤N

1

|k|2

 1
2

+ 2cP (∥w̃2∥|η|+ ∥ṽ1∥|ζ|)|ψv − ψw|

 ∑
0<|k|≤N

1

|k|4

 1
2

.

We prove the following estimates:

∑
0<|k|≤N

1

|k|2
= 2 +

∑
1<|k|≤N

1

|k|2
≤ 2 +

∫ π
2

0

∫ N

1

1

r2
drdθ ≤ 2 +

π

2
≤ 4,

∑
0<|k|≤N

1

|k|4
= 2 +

∑
1<|k|≤N

1

|k|4
≤ 2 +

∫ π
2

0

∫ N

1

1

r4
drdθ ≤ 2 +

π

6
≤ 4.

Thus, using lemmas 3.1 and 3.2, we have the inequalities:

|(α̃1 − α̃2) + (β̃1 − β̃2)||ψv + ψw| ≤2cP (|w̃2|+ |ṽ1|)(|η|+ |ζ|)

≤2
√
2cPMH(ϕv, ϕw)(|η|+ |ζ|),

|(α̃1 − α̃2)− (β̃1 − β̃2)||ψv − ψw| ≤2cP (|w̃2|+ |ṽ1|)(|η|+ |ζ|)
+ 4cP (∥w̃2∥+ ∥ṽ1∥)(|η|+ |ζ|)

≤2
√
2cP (MH(ϕv, ϕw) + 2MV (ϕ

v, ϕw))(|η|+ |ζ|)
Thanks to corollary 3.1, we have the estimate holding for any p ∈ [0, 1]:

∥η∥Cb(H) + ∥ζ∥Cb(H)

≤ 2
√
2cP√

νminN
(ν′max)

1
2−

p
2

(
|α̃1 − α̃2|2−p + |β̃1 − β̃2|2−p

) 1
2
(
∥w∥2Cb(V ) + ∥v∥

2
Cb(V )

) 1
2

≤ 2
√
2cP√

νminN
(ν′max)

1
2−

p
2

(
|α̃1 − α̃2|2−p + |β̃1 − β̃2|2−p

) 1
2

MV (ϕ
v, ϕw).

Thus we have proved the inequalities for any p ∈ [0, 1]:

|(α̃1 − α̃2)+(β̃1 − β̃2)||ψv + ψw|

≤ 8c2P√
νminN

(ν′max)
1
2−

p
2MH(ϕv, ϕw)MV (ϕ

v, ϕw)
(
|α̃1 − α̃2|2−p + |β̃1 − β̃2|2−p

) 1
2

,

|(α̃1−α̃2)− (β̃1 − β̃2)||ψv − ψw|

≤ 8c2P√
νminN

(ν′max)
1
2−

p
2 (MH(ϕv, ϕw) + 2MV (ϕ

v, ϕw))MV (ϕ
v, ϕw)

(
|α̃1 − α̃2|2−p + |β̃1 − β̃2|2−p

) 1
2

.

Proof of lemma 3.3 First, note that:

α− β
2
≥γ

≥min{α1, α2} −min{β1, β2}
≥νmin
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Let η = ṽ1 − ṽ2 and ζ = w̃1 − w̃2. They verify the differential equation

∂tη + B(ζ,v) + B(w, η) + αAη + βAζ = −(α̃1 − α̃2)Av − (β̃1 − β̃2)Aw + µ(ϕv1 − ϕ2v − PNη),

∂tζ + B(η,w) + B(v, ζ) + αAζ + βAη = −(α̃1 − α̃2)Aw − (β̃1 − β̃2)Av + µ(ϕw1 − ϕw2 − PNζ).

We test the first equation with η:

1

2

d

dt
|η|2 + α∥η∥2 + µ|PNη|2 =− β⟨Aζ, η⟩ − (α̃1 − α̃2)⟨Av, η⟩ − (β̃1 − β̃2)⟨Aw, η⟩

− ⟨B(ζ,v), η⟩

≤β
2
(∥ζ∥2 + ∥η∥2) + |α̃1 − α̃2|∥v∥∥η∥+ |β̃1 − β̃2|∥w∥∥η∥

+ µ|ϕv1 − ϕv2||η|+ ∥v∥|ζ|
1
2 ∥ζ∥ 1

2 |η| 12 ∥η∥ 1
2

We now make use of Young’s inequality (11) on each terms. For some positive constants ε1, ε2 > 0:

|α̃1 − α̃2|∥v∥∥η∥ ≤
|α̃1 − α̃2|

2

(
ε1∥η∥2 +

1

ε1
∥v∥2

)
,

|β̃1 − β̃2|∥w∥∥η∥ ≤
|β̃1 − β̃2|

2

(
ε2∥η∥2 +

1

ε2
∥w∥2

)
.

We also use Young’s inequality and the identity |η|2 = |η − PNη|2 + |PNη|2 to prove that for any ε3 > 0:

µ|ϕv1 − ϕv2||η| ≤
µ

2ε3
|ϕv1 − ϕv2|2 +

µε3
2
|η|2

≤ µ

2ε3
|ϕv1 − ϕv2|2 +

µε3c
2
P

2N2
∥η∥2 + µε3

2
|PNη|2.

Thus gathering all these inequalities and rearranging the terms, we obtain:

1

2

d

dt
|η|2 +

(
α− β

2
− ε1

2
|α̃1 − α̃2| −

ε2
2
|β̃1 − β̃2| −

µε3c
2
P

2N2

)
∥η∥2 − β

2
∥ζ∥2

+ µ
(
1− ε3

2

)
|PNη|2 ≤

|α̃1 − α̃2|
2ε1

∥v∥2 + |β̃1 − β̃2|
2ε2

∥w∥2 + µ

2ε3
|ϕv1 − ϕv2|2

+ ∥v∥|ζ| 12 ∥ζ∥ 1
2 |η| 12 ∥η∥ 1

2 .

Similarly, one proves:

1

2

d

dt
|ζ|2 +

(
α− β

2
− ε1

2
|α̃1 − α̃2| −

ε2
2
|β̃1 − β̃2| −

µε3c
2
P

2N2

)
∥ζ∥2 − β

2
∥η∥2

+ µ
(
1− ε3

2

)
|PNζ|2 ≤

|α̃1 − α̃2|
2ε1

∥w∥2 + |β̃1 − β̃2|
2ε2

∥v∥2 + µ

2ε3
|ϕw1 − ϕw2 |2

+ ∥w∥|ζ| 12 ∥ζ∥ 1
2 |η| 12 ∥η∥ 1

2 .
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Summing the two inequalities, we get:

1

2

d

dt
(|η|2 + |ζ|2)+

(
α− β − ε1

2
|α̃1 − α̃2| −

ε2
2
|β̃1 − β̃2| −

µε3c
2
P

2N2

)
(∥η∥2 + ∥ζ∥2)

+ µ
(
1− ε3

2

)
(|PNη|2 + |PNζ|2)

≤

(
|α̃1 − α̃2|

2ε1
+
|β̃1 − β̃2|

2ε2

)
(∥w∥2 + ∥v∥2)

+
µ

2ε3
(|ϕv1 − ϕv2|2 + |ϕw1 − ϕw2 |2)

+ |ζ| 12 ∥ζ∥ 1
2 |η| 12 ∥η∥ 1

2 (∥v∥+ ∥w∥).

We now choose ε1 = α1−p|α̃1 − α̃2|p−1 and ε2 = β
1−p|β̃1 − β̃2|p−1, ε3 = N2

µc2P
γ. After some calculations, the

inequality becomes:

1

2

d

dt
(|η|2 + |ζ|2)+γ

2
(∥η∥2 + ∥ζ∥2) +

(
µ− N2

2c2P
γ

)
(|PNη|2 + |PNζ|2)

≤1

2

(
α1−p|α̃1 − α̃2|2−p + β

1−p|β̃1 − β̃2|2−p
)
(∥w∥2 + ∥v∥2)

+
µ2c2P
2γN2

(|ϕv1 − ϕv2|2 + |ϕw1 − ϕw2 |2) + |ζ|
1
2 ∥ζ∥ 1

2 |η| 12 ∥η∥ 1
2 (∥v∥+ ∥w∥).

We now examine the last term on the right hand side. First, using Young’s inequality, we remark that
|ζ| 12 ∥ζ∥ 1

2 |η| 12 ∥η∥ 1
2 ≤ 1

2 (|ζ|∥ζ∥+ |η|∥η∥). Then, using (2), we prove that:

|η|∥η∥ ≤∥η∥(|η − PNη|+ |PNη|)

≤∥η∥|PNη|+
cP
N
∥η∥2

≤3

2

cP
N
∥η∥2 + N

2cP
|PNη|2.

The same inequality holds for ζ. Thus:

1

2

d

dt
(|η|2 + |ζ|2)+1

2

(
γ − 3

cP
N

(∥v∥+ ∥w∥)
)
(∥η∥2 + ∥ζ∥2)

+

(
µ− N2

2c2P
γ − N

2cP
(∥v∥+ ∥w∥)

)
(|PNη|2 + |PNζ|2)

≤1

2

(
α1−p|α̃1 − α̃2|2−p + β

1−p|β̃1 − β̃2|2−p
)
(∥w∥2 + ∥v∥2)

+
µ2c2P
2γN2

(|ϕv1 − ϕv2|2 + |ϕw1 − ϕw2 |2).

Using (2), we prove:

∥η∥2 ≥ N2

c2P
|η − PNη|2 =

N2

c2P
(|η|2 − |PNη|2).
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The differential inequality then becomes:

1

2

d

dt
(|η|2 + |ζ|2)+N2

2c2P

(
γ − 3

cP
N

(∥v∥+ ∥w∥)
)
(|η|2 + |ζ|2)

+

(
µ− N2

c2P
γ +

N

cP
(∥v∥+ ∥w∥)

)
(|PNη|2 + |PNζ|2)

≤1

2

(
α1−p|α̃1 − α̃2|2−p + β

1−p|β̃1 − β̃2|2−p
)
(∥w∥2 + ∥v∥2)

+
µ2c2P
2γN2

(|ϕv1 − ϕv2|2 + |ϕw1 − ϕw2 |2).

But since we supposed that µ ≥ γN2

c2P
, we have that µ − N2

c2P
γ + N

cP
(∥v∥ + ∥w∥) ≥ 0. Thus, we can drop the

last term in the left hand side, and the inequality becomes:

d

dt
(|η|2 + |ζ|2)+N

2

c2P

(
γ − 3

cP
N

(∥v∥+ ∥w∥)
)
(|η|2 + |ζ|2)

≤
(
α1−p|α̃1 − α̃2|2−p + β

1−p|β̃1 − β̃2|2−p
)
(∥w∥2 + ∥v∥2)

+
µ2c2P
γN2

(|ϕv1 − ϕv2|2 + |ϕw1 − ϕw2 |2)

One can easily prove that for all x, y ≥ 0, 2(x2 + y2)
1
2 ≥ x+ y. Since we suppose that N ≥ 8cP

γ MV (ϕ
v
i , ϕ

w
i )

for i = 1, 2, and using (14), we have:

N ≥ 4cP
γ

∥ṽ1∥+ ∥ṽ2∥+ ∥w̃1∥+ ∥w̃2∥
2

≥ 4cP
γ

(∥v∥+ ∥w∥).

Thus, γ − 3 cPN (∥v∥+ ∥w∥) ≥ γ − 3γ
4 = γ

4 > 0. This proves the differential inequality:

d

dt
(|η|2 + |ζ|2)+γN

2

4c2P
(|η|2 + |ζ|2)

≤
(
α1−p|α̃1 − α̃2|2−p + β

1−p|β̃1 − β̃2|2−p
)
(∥w∥2Cb(V ) + ∥v∥

2
Cb(V ))

+
µ2c2P
γN2

(∥ϕv1 − ϕv2∥2Cb(H) + ∥ϕ
w
1 − ϕw2 ∥2Cb(H)).

Denote p =
(
α1−p|α̃1 − α̃2|2−p + β

1−p|β̃1 − β̃2|2−p
)
(∥w∥2Cb(V ) + ∥v∥

2
Cb(V )) +

µ2c2P
γN2 (∥ϕv1 − ϕv2∥2Cb(H) + ∥ϕ

w
1 −

ϕw2 ∥2Cb(H)). Using Grönwall’s lemma we prove that, for all −∞ < s < t < +∞:

|η(t)|2 + |ζ(t)|2 ≤ exp

(
−γN

2

4c2P
(t− s)

)
(|η(s)|2 + |ζ(s)|2) + 4c2P

γN2
p.

Taking the limit as s→ −∞ proves the result.
Proof of lemma 4.2 Let η = v1−v2, ζ = w1−w2, ψ

v = PNv1 and ψw = PNw1. The equations for η and
ζ are:

∂tη + (α1 − α2)Av1 + α2Aη + (β1 − β2)Aw1 + β2Aζ + B(v1, ζ) + B(η,w2) + µPNη = 0,

∂tζ + (α1 − α2)Aw1 + α2Aζ + (β1 − β2)Av1 + β2Aη + B(w1, η) + B(ζ,v2) + µPNζ = 0.
(23)
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We test the first equation of (23) with A−1ψv. Using also the facts that A−1 is symmetric, PN is a self-adjoint
projection, PN commutes with A−1 and d

dt ⟨A
−1PNη, ψ

v⟩ = ⟨∂tη,A−1ψv⟩+ ⟨PNη,A−1∂tψ
v⟩, we have:

d

dt
⟨A−1PNη, ψ

v⟩+µ⟨A−1PNη, ψ
v⟩ − ⟨A−1PNη, ∂tψ

v⟩+ (α1 − α2)|ψv|2

+α2⟨η, ψv⟩+ (β1 − β2)⟨ψv, ψw⟩+ β2⟨ζ, ψv⟩
+⟨B(v1, ζ) + B(η,w2),A−1ψv⟩ = 0.

Denote ρvη = ⟨A−1PNη, ψ
v⟩. The equation becomes:

ρ̇vη+µρ
v
η − ⟨A−1PNη, ∂tψ

v⟩+ (α1 − α2)|ψv|2

+α2⟨η, ψv⟩+ (β1 − β2)⟨ψv, ψw⟩+ β2⟨ζ, ψv⟩
+⟨B(v1, ζ) + B(η,w2),A−1ψv⟩ = 0.

We multiply the equation by e−µ(t−τ) and time-intergate over [s, t]:

ρvη(t)−e−µ(t−s)ρvη(s) + (α1 − α2)

∫ t

s

e−µ(t−τ)|ψv(τ)|2dτ

−
∫ t

s

e−µ(t−τ)⟨A−1PNη, ∂tψ
v⟩dτ + α2

∫ t

s

e−µ(t−τ)⟨η, ψv⟩dτ

+(β1 − β2)
∫ t

s

e−µ(t−τ)⟨ψv, ψw⟩dτ + β2

∫ t

s

e−µ(t−τ)⟨ζ, ψv⟩dτ

+

∫ t

s

e−µ(t−τ)(⟨B(v1, ζ) + B(η,w2),A−1ψv⟩)dτ = 0.

(24)

Denote ρwζ = ⟨A−1PNζ, ψ
w⟩. With similar calculations, one proves that:

ρwζ (t)−e−µ(t−s)ρwζ (s) + (α1 − α2)

∫ t

s

e−µ(t−τ)|ψw(τ)|2dτ

−
∫ t

s

e−µ(t−τ)⟨A−1PNζ, ∂tψ
w⟩dτ + α2

∫ t

s

e−µ(t−τ)⟨ζ, ψw⟩dτ

+(β1 − β2)
∫ t

s

e−µ(t−τ)⟨ψv, ψw⟩dτ + β2

∫ t

s

e−µ(t−τ)⟨η, ψw⟩dτ

+

∫ t

s

e−µ(t−τ)(⟨B(w1, η) + B(ζ,v2),A−1ψw⟩)dτ = 0.

(25)
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Doing the difference of (24) and (25) and similar calculations, one proves that:

ρvη(t)− ρwζ (t)−e−µ(t−s)(ρvη(s)− ρwζ (s))

+(α1 − α2)

∫ t

s

e−µ(t−τ)(|ψv(τ)|2 − |ψw(τ)|2)dτ

−
∫ t

s

e−µ(t−τ)(⟨PNη,A−1∂tψ
v⟩ − ⟨PNζ,A−1∂tψ

w⟩)dτ

+α2

∫ t

s

e−µ(t−τ)(⟨η, ψv⟩ − ⟨ζ, ψw⟩)dτ

+β2

∫ t

s

e−µ(t−τ)(⟨ζ, ψv⟩ − ⟨η, ψw⟩)dτ

+

∫ t

s

e−µ(t−τ)(⟨B(v1, ζ) + B(η,w2),A−1ψv⟩)dτ

−
∫ t

s

e−µ(t−τ)(⟨B(w1, η) + B(ζ,v2),A−1ψw⟩)dτ = 0.

(26)

Thus:

|α1 − α2|µ−1(1− e−µ(t−s)) inf
[s,t]

∣∣|ψv|2 − |ψw|2∣∣
≤|ρvη(t)− ρwζ (t)|+ e−µ(t−s)|ρvη(s)− ρwζ (s)|

+ µ−1(1− e−µ(t−s)) sup
[s,t]

(
|A−1∂tψ

v|+ α2|ψv|+ β2|ψw|
)
∥PNη∥Cb(H)

+ µ−1(1− e−µ(t−s)) sup
[s,t]

(
|A−1∂tψ

w|+ α2|ψw|+ β2|ψv|
)
∥PNζ∥Cb(H)

+ µ−1(1− e−µ(t−s)) sup
[s,t]

(
∥v1∥L4(Ω)∥A− 1

2ψv∥L4(Ω) + ∥v2∥L4(Ω)∥A− 1
2ψw∥L4(Ω)

)
∥η∥Cb(H)

+ µ−1(1− e−µ(t−s)) sup
[s,t]

(
∥w1∥L4(Ω)∥A− 1

2ψw∥L4(Ω) + ∥w2∥L4(Ω)∥A− 1
2ψv∥L4(Ω)

)
∥ζ∥Cb(H).

Note the following estimates:

• |ρvη − ρwζ | ≤ ∥PNη∥Cb(H)∥A−1ψv∥Cb(H) + ∥PNζ∥Cb(H) ∥A−1ψw∥Cb(H) <∞.

• For i = 1, 2, using the continuous inclusion of H1(Ω) into L4(Ω), ∥vi∥L4(Ω) ≤ c
1
2

L∥vi∥
1
2

Cb(H)∥vi∥
1
2

Cb(V ) ≤

c
1
2

LMH(ϕv, ϕw)
1
2MV (ϕ

v, ϕw)
1
2 . Similarly, ∥wi∥L4(Ω) ≤ c

1
2

LMH(ϕv, ϕw)
1
2MV (ϕ

v, ϕw)
1
2 .

• Using also Poincaré’s inequality, ∥A− 1
2ψv∥L4(Ω) ≤ c

1
2

L|A− 1
2ψv| 12 |ψv| 12 ≤ cP c

1
2

L∥v1∥
1
2

Cb(H)∥v1∥
1
2

Cb(V ) ≤

cP c
1
2

LMH(ϕv, ϕw)
1
2MV (ϕ

v, ϕw)
1
2 . Similarly, ∥A− 1

2ψw∥L4(Ω) ≤ cP c
1
2

LMH(ϕv, ϕw)
1
2MV (ϕ

v, ϕw)
1
2 .



30 TITLE WILL BE SET BY THE PUBLISHER

Define δ = e−
µ(t−s)

N2 . The previous inequality then becomes, thanks to corollary 3.1:

|α1 − α2| inf
[s,t]

∣∣|ψv|2 − |ψw|2∣∣
≤µ1 + δN

2

1− δN2

(
∥PNη∥Cb(H)∥A−1ψv∥Cb(H) + ∥PNζ∥Cb(H)∥A−1ψw∥Cb(H)

)
+
(
∥A−1∂tψ

v∥Cb(H) + α2∥ψv∥Cb(H) + β2∥ψw∥Cb(H)

)
∥PNη∥Cb(H)

+
(
∥A−1∂tψ

w∥Cb(H) + α2∥ψw∥Cb(H) + β2∥ψv∥Cb(H)

)
∥PNζ∥Cb(H)

+ 2cP cLMH(ϕv, ϕw)MV (ϕ
v, ϕw)(∥η∥Cb(H) + ∥ζ∥Cb(H))

≤M̃
(
∥PNη∥Cb(H) + ∥PNζ∥Cb(H)

)
+

4
√
2c2P

√
ν′max√

νminN
cLMH(ϕv, ϕw)MV (ϕ

v, ϕw)2(|α1 − α2|+ |β1 − β2|),

(27)

where M̃ = ∥A−1∂tψ
v∥Cb(H)+∥A−1∂tψ

w∥Cb(H)+ν
′
max(∥ψv∥Cb(H)+∥ψw∥Cb(H))+µ

1+δN
2

1−δN2

(
∥A−1ψv∥Cb(H) + ∥A−1ψw∥Cb(H)

)
Similarly, we test the first equation of (23) with A−1ψw. Denoting ρwη = ⟨A−1PNη, ψ

w⟩, we have:

˙ρwη +µρ
w
η − ⟨A−1PNη, ∂tψ

w⟩+ (α1 − α2)⟨ψv, ψw⟩
+α2⟨η, ψw⟩+ (β1 − β2)|ψw|2 + β2⟨ζ, ψw⟩
+⟨B(v1, ζ) + B(η,w2),A−1ψw⟩ = 0.

We multiply the equation by e−µ(t−τ) and time-intergate over [s, t]:

ρwη (t)−e−µ(t−s)ρwη (s) + (α1 − α2)

∫ t

s

e−µ(t−τ)⟨ψv, ψw⟩dτ

−
∫ t

s

e−µ(t−τ)⟨A−1PNη, ∂tψ
w⟩dτ + α2

∫ t

s

e−µ(t−τ)⟨η, ψw⟩dτ

+(β1 − β2)
∫ t

s

e−µ(t−τ)|ψw(τ)|2dτ + β2

∫ t

s

e−µ(t−τ)⟨ζ, ψw⟩dτ

+

∫ t

s

e−µ(t−τ)(⟨B(v1, ζ) + B(η,w2),A−1ψw⟩)dτ = 0.

(28)

Denote ρvζ = ⟨A−1PNζ, ψ
v⟩. With similar arguments, one proves that:

ρvζ(t)−e−µ(t−s)ρvζ(s) + (α1 − α2)

∫ t

s

e−µ(t−τ)⟨ψv, ψw⟩dτ

−
∫ t

s

e−µ(t−τ)⟨A−1PNζ, ∂tψ
v⟩dτ + α2

∫ t

s

e−µ(t−τ)⟨ζ, ψv⟩dτ

+(β1 − β2)
∫ t

s

e−µ(t−τ)|ψv(τ)|2dτ + β2

∫ t

s

e−µ(t−τ)⟨η, ψv⟩dτ

+

∫ t

s

e−µ(t−τ)(⟨B(w1, η) + B(ζ,v2),A−1ψv⟩)dτ = 0.

(29)
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Doing the difference of (28) and (29) and similar calculations, one proves that:

ρwη (t)− ρvζ(t)−e−µ(t−s)(ρwη (s)− ρvζ(s))

+(β1 − β2)
∫ t

s

e−µ(t−τ)(|ψw(τ)|2 − |ψv(τ)|2)dτ

−
∫ t

s

e−µ(t−τ)(⟨PNη,A−1∂tψ
w⟩ − ⟨PNζ,A−1∂tψ

v⟩)dτ

+α2

∫ t

s

e−µ(t−τ)(⟨η, ψw⟩ − ⟨ζ, ψv⟩)dτ

+β2

∫ t

s

e−µ(t−τ)(⟨ζ, ψw⟩ − ⟨η, ψv⟩)dτ

+

∫ t

s

e−µ(t−τ)(⟨B(v1, ζ) + B(η,w2),A−1ψw⟩)dτ

−
∫ t

s

e−µ(t−τ)(⟨B(w1, η) + B(ζ,v2),A−1ψv⟩)dτ = 0.

(30)

Thus, similar to (27), we have:

|β1 − β2| inf
[s,t]

∣∣|ψv|2 − |ψw|2∣∣
≤M̃

(
∥PNη∥Cb(H) + ∥PNζ∥Cb(H)

)
+

4
√
2c2P

√
ν′max√

νminN
cLMH(ϕv, ϕw)MV (ϕ

v, ϕw)2(|α1 − α2|+ |β1 − β2|),

(31)

Summing (27) and (31) then proves (19).

The author would like to thank Joshua Hudson for kindly providing his code which served as a basis for the simulations
done in this article.
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